
Netcool/OMNIbus
Version 7 Release 4

Administration Guide

SC14-7527-02

���

Netcool/OMNIbus
Version 7 Release 4

Administration Guide

SC14-7527-02

���

Note
Before using this information and the product it supports, read the information in “Notices” on page 409.

This edition applies to version 7, release 4 of IBM Tivoli Netcool/OMNIbus (product number 5724-S44) and to all
subsequent releases and modifications until otherwise indicated in new editions.

© Copyright IBM Corporation 1994, 2013.
US Government Users Restricted Rights – Use, duplication or disclosure restricted by GSA ADP Schedule Contract
with IBM Corp.

Contents

About this publication vii
Intended audience vii
What this publication contains vii
Publications viii
Accessibility x
Tivoli technical training. x
Support information x
Conventions used in this publication x

Chapter 1. Configuring the ObjectServer 1
Alert processing in the ObjectServer 1
Using the ObjectServer properties and command-line
options 1

ObjectServer properties and command-line options 3
Running the ObjectServer in secure mode 19
Client tool updates using IDUC 22

Specifying the IDUC update interval 22
Specifying the IDUC port. 22

Configuring the ObjectServer for multicultural
support. 23
Protecting the ObjectServer against event floods . . 24
Data storage and checkpointing 26

Data storage using memstores 26
Introduction to checkpointing 27
nco_check_store checkpoint verification utility . . 28
Changing the table_store memstore soft and hard
limits 29

Using nco_postmsg to send alerts to ObjectServers 30
nco_postmsg properties and command-line
options 33
nco_postmsg examples and resulting INSERT
statements 36

Chapter 2. Configuring a proxy server 39
Starting the proxy server 39

Starting a proxy server by using process control 39
Starting a proxy server by using services
(Windows). 40
Starting the proxy server manually 40
Proxy server properties and command-line
options 40

Connecting to the proxy server 44
Running the proxy server in secure mode 44

Chapter 3. Configuring a firewall bridge
server 47
A standard firewall bridge server configuration . . 48
A multiple firewall bridge server configuration . . 50
Firewall bridge server failover configuration . . . 51
Starting the firewall bridge server 53

Starting a firewall bridge server by using process
control 53
Starting a firewall bridge server by using
Windows services 53
Starting the firewall bridge server manually . . 53

Firewall bridge server properties and
command-line options 54

Trusted hosts definition file 58
Firewall bridge server command language 59

SHOW PROPS and GET CONFIG 59
GET PROP 60
SHOW DATAFLOWS 60
SET LOG LEVEL TO 61
SHUTDOWN. 61

Chapter 4. Using Netcool/OMNIbus
Administrator to configure
ObjectServers. 63
Getting started with Netcool/OMNIbus
Administrator 63

Considerations for multicultural support . . . 63
Starting Netcool/OMNIbus Administrator . . . 64
Connecting to an ObjectServer 67
Connecting to a process agent 68
Working with Tivoli Netcool/OMNIbus
components 69
Secure sockets layer connections 70
Selecting ObjectServer objects to configure . . . 71
Setting preferences in Netcool/OMNIbus
Administrator 72
Exiting Netcool/OMNIbus Administrator . . . 75

Managing authorization with users, groups, roles,
and restriction filters 75

Configuring roles 76
Configuring groups. 81
Configuring users 85
Configuring restriction filters 90

Configuring menus, tools, and prompts 92
Customizing menus 93
Configuring tools 97
Configuring prompts 101

Configuring automations 104
Configuring triggers 105
Configuring procedures 117
Configuring signals 126

Configuring the visual appearance of the event list 129
Creating and editing conversions 129
Deleting conversions 130
Creating and editing event severity colors for
Windows event lists 130
Creating and editing column visuals 131
Deleting column visuals 132
Creating and editing classes 132
Deleting classes 133

Configuring ObjectServer databases, files,
properties, connections, and channels 133

Configuring databases 134
Viewing and changing ObjectServer properties 143
Configuring ObjectServer files 144
Monitoring ObjectServer connections 146

© Copyright IBM Corp. 1994, 2013 iii

Configuring channels. 147
Using the SQL interactive interface in GUI mode 148

Chapter 5. ObjectServer SQL. 151
SQL interactive interface. 151

Starting the SQL interactive interface 152
Running SQL commands in the SQL interactive
interface 154
Running the SQL interactive interface in secure
mode 157
Encrypting passwords in UNIX nco_sql scripts 158
Exiting the SQL interactive interface 158

Creating, altering, and dropping ObjectServer
objects. 159

Databases 159
Tables 161
Indexes 170
Views 172
Restriction filters 174
Files 175

Reserved words 178
SQL building blocks 180

Operators 180
Functions. 186
Expressions 192
Conditions 192

Querying and manipulating data using
ObjectServer SQL 194

Inserting a new row of data into a table
(INSERT command) 194
Updating the data in table columns (UPDATE
command) 195
Deleting rows of data from a table (DELETE
command) 196
Retrieving data from a table or view (SELECT
command) 197
Logging information to ObjectServer files
(WRITE INTO command) 202
Displaying details of columns in a table or view
(DESCRIBE command) 203
Adding or updating service status data (SVC
command) 204
Sending IDUC notifications to IDUC clients
(IDUC FLUSH command) 204

Changing the settings of the ObjectServer (ALTER
SYSTEM command) 205
Setting the default database (SET DATABASE and
USE DATABASE commands) 206
Verifying your SQL syntax (CHECK STATEMENT
command) 207
Creating, modifying, and deleting users, groups,
and roles 207

Creating a user (CREATE USER command) . . 207
Modifying the details of an existing user
(ALTER USER command) 208
Deleting a user (DROP USER command) . . . 209
Creating a group (CREATE GROUP command) 210
Modifying the details of an existing group
(ALTER GROUP command) 210
Deleting a group (DROP GROUP command) 211
Creating a role (CREATE ROLE command) . . 211

Modifying the description of a role (ALTER
ROLE command) 212
Using roles to assign permissions to users . . . 212
Deleting a role (DROP ROLE command) . . . 218

Creating, running, and dropping procedures . . . 219
SQL procedures 219
External procedures 228
Running procedures 230
Dropping procedures 231

Configuring automation using triggers 231
Creating, modifying, and deleting trigger
groups 231
Creating, modifying, and dropping triggers . . 232

Standard Tivoli Netcool/OMNIbus automations 256
Automation for service-affected events 261
Automation examples 262

Chapter 6. Configuring accelerated
event notification. 265
Configuring a probe to flag events for acceleration 265
Configuring a gateway for accelerated event
notification 266
Configuring the alerts.status table to receive the
AEN flag 267
Configuring channels to broadcast event data . . 267

Creating and editing channels 267
Copying and pasting channels. 270
Deleting a channel. 271
Sending messages to channel recipients. . . . 271
Disconnecting Accelerated Event Notification
clients 272
Shutting down Accelerated Event Notification
clients 273

Configuring triggers to support accelerated event
notification 273

Chapter 7. Using process control to
manage processes and external
procedures 275
How process agents connect 275

Host name resolution at startup 276
Process control components 277

Process agents 277
Processes 277
Services 278
Process control utilities 278

Creating and starting a process control network
system 279

Creating UNIX user groups for the process
control system 280
Windows account requirements for the process
control system 281
Configuring server communication information
for process agents 281
Updating the default process control
configuration file 282
Manually starting process agents 282
Process agent security considerations 289
Automatically starting process agents on UNIX 292

iv IBM Tivoli Netcool/OMNIbus: Administration Guide

Automatically starting process agents on
Windows 293
Managing your process control system
configuration 294

Configuring and managing process control from
the command line 294

Defining processes, services, and hosts for
process control 295
Managing process control using the process
control utilities 304

Using Netcool/OMNIbus Administrator to manage
process control 312

Connecting to a process agent 312
Displaying and configuring status information
for a process agent 314
Displaying the processes and services for a
process agent 315
Configuring services for a process agent . . . 316
Configuring processes 320
Copying and pasting a service or process
between process agent hosts 325
Running an external action 326
Stopping a process agent 327

Using process control to run external procedures in
automations 327

Chapter 8. Performance tuning 329
Tivoli Netcool/OMNIbus key performance
indicators. 329

ObjectServer key performance indicators . . . 330
Probe key performance indicators 333
Gateway key performance indicators 334

Best practices for performance tuning 335
Run the ObjectServer with profiling enabled . . 335
Collect statistical information about triggers . . 337
Review and revise your system architecture . . 339
Enable the stats_triggers trigger group 340
Review and revise your probe configuration
files 341
Configure event flood detection 341
Manage the volume of information in the
alerts.details table 341
Use a monitoring agent to monitor and manage
Tivoli Netcool/OMNIbus resources 342
Review and amend your SQL queries, and
create a selection of well-designed, efficient
indexes 342
Track the performance trends at regular
intervals 344

SQL query guidelines. 344
Reviewing the results of automatic query
optimizations 344
Manually optimizing queries 347
Indexing guidelines 348
Example usage of indexes with SQL queries . . 349
Example usage of indexes with triggers or
procedures 351

Best practices for creating triggers 351

Appendix A. ObjectServer tables . . . 357
Alerts tables 357

alerts.status table 357
alerts.details table 369
alerts.journal table 369
alerts.iduc_messages table 370
alerts.application_types table 370
master.class_membership table 371

Service tables 372
service.status table. 372

System catalog tables 372
catalog.memstores table 372
catalog.databases table 373
catalog.tables table 373
catalog.base_tables table 374
catalog.views table 374
catalog.files table 375
catalog.restrictions table 375
catalog.columns table. 375
catalog.primitive_signals table 376
catalog.primitive_signal_parameters table . . . 376
catalog.trigger_groups table 377
catalog.triggers table 377
catalog.database_triggers table. 378
catalog.signal_triggers table 378
catalog.temporal_triggers table 378
catalog.procedures table 379
catalog.sql_procedures table 379
catalog.external_procedures table 379
catalog.procedure_parameters table 380
catalog.connections table 380
catalog.properties table 381
catalog.security_permissions table 381
catalog.profiles table 381
catalog.indexes table 382

Statistics tables 383
catalog.profiles table 383
master.stats table 384
catalog.trigger_stats table 384
catalog.channel_stats table 385

Client tool support tables 386
alerts.resolutions table 386
alerts.conversions table 386
alerts.col_visuals table 387
alerts.colors table 387

Desktop tools tables 388
tools.actions table 388
tools.action_access table 389
tools.menus table 389
tools.menu_items table 390
tools.prompt_defs table 390
tools.menu_defs table 391

Desktop ObjectServer tables 391
master.national table 391
master.servergroups table 392

Security tables for backward compatibility. . . . 392
IDUC tables 392

iduc_system.channel table 392
iduc_system.channel_interest table 393
iduc_system.channel_summary table 393
iduc_system.channel_summary_cols table . . . 393

Contents v

iduc_system.iduc_stats table 394
Service-affected events tables 394

precision.service_affecting_event table 394
precision.service_details table 394
precision.entity_service table 395

Registry tables 395
registry.oslc table 395
registry.probes table 396

Appendix B. SQL commands, variable
expressions, and helper buttons in
tools, automations, and transient
event lists 399

Appendix C. Application commands
quick reference 403

Notices 409
Trademarks 411

Index 413

vi IBM Tivoli Netcool/OMNIbus: Administration Guide

About this publication

Tivoli Netcool/OMNIbus is a service level management (SLM) system that delivers
real-time, centralized monitoring of complex networks and IT domains.

The IBM Tivoli Netcool/OMNIbus Administration Guide provides detailed information
about administrative tools, functions, and capabilities of Tivoli Netcool/OMNIbus.
In addition, it is designed to be used as a reference guide to assist you in
designing and configuring your environment.

Intended audience
This publication is intended for administrators who are responsible for configuring
Tivoli Netcool/OMNIbus.

What this publication contains

This publication contains the following sections:
v Chapter 1, “Configuring the ObjectServer,” on page 1

Describes how to configure the ObjectServer, which is the central repository for
data.

v Chapter 2, “Configuring a proxy server,” on page 39
Describes how to configure a proxy server to reduce the number of probe
connections to an ObjectServer.

v Chapter 3, “Configuring a firewall bridge server,” on page 47
Describes how to configure a firewall bridge server to allow probes to connect to
the ObjectServer from outside a secure network.

v Chapter 4, “Using Netcool/OMNIbus Administrator to configure ObjectServers,”
on page 63
Describes how to use Netcool/OMNIbus Administrator to configure and
manage ObjectServers.

v Chapter 5, “ObjectServer SQL,” on page 151
Describes the data structures of the ObjectServer and the syntax of ObjectServer
SQL.

v Chapter 6, “Configuring accelerated event notification,” on page 265
Describes how to configure Tivoli Netcool/OMNIbus for accelerated event
notification of events that might present a risk to the system.

v Chapter 7, “Using process control to manage processes and external procedures,”
on page 275
Describes the components, configuration, and management utilities that are
associated with the Tivoli Netcool/OMNIbus process control system. Also
includes information about using command utilities and Netcool/OMNIbus
Administrator to configure and managing process control

v Netcool MIB Manager
Describes how to use the MIB Manager component to parse Simple Network
Management Protocol (SNMP) management information base (MIB) files. From
these MIB files, you can generate Netcool rules files.

v Chapter 8, “Performance tuning,” on page 329

© Copyright IBM Corp. 1994, 2013 vii

Describes how to monitor and fine-tune Tivoli Netcool/OMNIbus performance.
v Appendix A, “ObjectServer tables,” on page 357

Contains ObjectServer database table information.
v Appendix B, “SQL commands, variable expressions, and helper buttons in tools,

automations, and transient event lists,” on page 399
Provides reference information about common SQL commands, variable
expressions, and helper buttons that are used in tools, automations, and
transient event lists.

Publications
This section lists publications in the Tivoli Netcool/OMNIbus library and related
documents. The section also describes how to access Tivoli publications online and
how to order Tivoli publications.

Your Tivoli Netcool/OMNIbus library

The following documents are available in the Tivoli Netcool/OMNIbus library:
v IBM Tivoli Netcool/OMNIbus Installation and Deployment Guide, SC14-7526

Includes installation and upgrade procedures for Tivoli Netcool/OMNIbus, and
describes how to configure security and component communications. The
publication also includes examples of Tivoli Netcool/OMNIbus architectures and
describes how to implement them.

v IBM Tivoli Netcool/OMNIbus Administration Guide, SC14-7527
Describes how to perform administrative tasks using the Tivoli
Netcool/OMNIbus Administrator GUI, command-line tools, and process control.
The publication also contains descriptions and examples of ObjectServer SQL
syntax and automations.

v IBM Tivoli Netcool/OMNIbus Web GUI Administration and User's Guide, SC14-7528
Describes how to perform administrative and event visualization tasks using the
Tivoli Netcool/OMNIbus Web GUI.

v IBM Tivoli Netcool/OMNIbus User's Guide, SC14-7529
Provides an overview of the desktop tools and describes the operator tasks
related to event management using these tools.

v IBM Tivoli Netcool/OMNIbus Probe and Gateway Guide, SC14-7530
Contains introductory and reference information about probes and gateways,
including probe rules file syntax and gateway commands.

v IBM Tivoli Monitoring for Tivoli Netcool/OMNIbus Agent User's Guide, SC14-7532
Describes how to install the health monitoring agent for Tivoli
Netcool/OMNIbus and contains reference information about the agent.

v IBM Tivoli Netcool/OMNIbus Event Integration Facility Reference, SC14-7533
Describes how to develop event adapters that are tailored to your network
environment and the specific needs of your enterprise. This publication also
describes how to filter events at the source.

v IBM Tivoli Netcool/OMNIbus Error Messages Guide, SC14-7534
Describes system messages in Tivoli Netcool/OMNIbus and how to respond to
those messages.

v IBM Tivoli Netcool/OMNIbus Web GUI Administration API (WAAPI) User's Guide,
SC22-7535

viii IBM Tivoli Netcool/OMNIbus: Administration Guide

Shows how to administer the Tivoli Netcool/OMNIbus Web GUI using the XML
application programming interface named WAAPI

v IBM Tivoli Netcool/OMNIbus ObjectServer HTTP Interface Reference Guide,
SC27-5613Describes the URIs and common behaviors of the Application
Programming Interface (API) that is called the ObjectServer HTTP Interface.
Describes how to enable the API and provides examples of JSON payloads, and
HTTP requests and responses.

v IBM Tivoli Netcool/OMNIbus ObjectServer OSLC Interface Reference Guide,
SC27-5613Describes the services, resources, and common behaviors of the Open
Services for Lifecycle Collaboration (OSLC) Application Programming Interface
(API) that is called the ObjectServer OSLC Interface. Describes how to enable the
API and provides examples of service provider definitions, RDF/XML payloads,
and HTTP requests and responses.

Accessing terminology online

The IBM Terminology Web site consolidates the terminology from IBM product
libraries in one convenient location. You can access the Terminology Web site at the
following Web address:

http://www.ibm.com/software/globalization/terminology

Accessing publications online

IBM posts publications for this and all other Tivoli products, as they become
available and whenever they are updated, to the Tivoli Information Center Web
site at:

http://publib.boulder.ibm.com/infocenter/tivihelp/v3r1/index.jsp

Note: If you print PDF documents on other than letter-sized paper, set the option
in the File > Print window that allows Adobe Reader to print letter-sized pages on
your local paper.

Ordering publications

You can order many Tivoli publications online at the following Web site:

http://www.ibm.com/e-business/linkweb/publications/servlet/pbi.wss

You can also order by telephone by calling one of these numbers:
v In the United States: 800-879-2755
v In Canada: 800-426-4968

In other countries, contact your software account representative to order Tivoli
publications. To locate the telephone number of your local representative, perform
the following steps:
1. Go to the following Web site:

http://www.ibm.com/e-business/linkweb/publications/servlet/pbi.wss
2. Select your country from the list and click Go. The Welcome to the IBM

Publications Center page is displayed for your country.
3. On the left side of the page, click About this site to see an information page

that includes the telephone number of your local representative.

About this publication ix

http://www.ibm.com/software/globalization/terminology
http://publib.boulder.ibm.com/infocenter/tivihelp/v3r1/index.jsp
http://www.ibm.com/e-business/linkweb/publications/servlet/pbi.wss
http://www.ibm.com/e-business/linkweb/publications/servlet/pbi.wss

Accessibility
Accessibility features help users with a physical disability, such as restricted
mobility or limited vision, to use software products successfully.

With this product, you can use assistive technologies to hear and navigate the
interface. You can also use the keyboard instead of the mouse to operate some
features of the graphical user interface.

Tivoli technical training

For Tivoli technical training information, refer to the following IBM Tivoli
Education Web site:

http://www.ibm.com/software/tivoli/education

Support information
If you have a problem with your IBM software, you want to resolve it quickly. IBM
provides the following ways for you to obtain the support you need:

Online
Go to the IBM Software Support site at http://www.ibm.com/software/
support/probsub.html and follow the instructions.

IBM Support Assistant
The IBM Support Assistant (ISA) is a free local software serviceability
workbench that helps you resolve questions and problems with IBM
software products. The ISA provides quick access to support-related
information and serviceability tools for problem determination. To install
the ISA software, go to http://www.ibm.com/software/support/isa.

Documentation
If you have a suggestion for improving the content or organization of this
guide, send it to the Tivoli Netcool/OMNIbus Information Development
team at:

mailto://L3MMDOCS@uk.ibm.com

Conventions used in this publication
This publication uses several conventions for special terms and actions and
operating system-dependent commands and paths.

Typeface conventions

This publication uses the following typeface conventions:

Bold

v Lowercase commands and mixed case commands that are otherwise
difficult to distinguish from surrounding text

v Interface controls (check boxes, push buttons, radio buttons, spin
buttons, fields, folders, icons, list boxes, items inside list boxes,
multicolumn lists, containers, menu choices, menu names, tabs, property
sheets), labels (such as Tip: and Operating system considerations:)

v Keywords and parameters in text

x IBM Tivoli Netcool/OMNIbus: Administration Guide

http://www.ibm.com/software/tivoli/education
http://www.ibm.com/software/support/probsub.html
http://www.ibm.com/software/support/probsub.html
http://www.ibm.com/software/support/isa
mailto://L3MMDOCS@uk.ibm.com

Italic

v Citations (examples: titles of publications, diskettes, and CDs)
v Words defined in text (example: a nonswitched line is called a

point-to-point line)
v Emphasis of words and letters (words as words example: "Use the word

that to introduce a restrictive clause."; letters as letters example: "The
LUN address must start with the letter L.")

v New terms in text (except in a definition list): a view is a frame in a
workspace that contains data

v Variables and values you must provide: ... where myname represents....

Monospace

v Examples and code examples
v File names, programming keywords, and other elements that are difficult

to distinguish from surrounding text
v Message text and prompts addressed to the user
v Text that the user must type
v Values for arguments or command options

Operating system-dependent variables and paths

This publication uses the UNIX convention for specifying environment variables
and for directory notation.

When using the Windows command line, replace $variable with %variable% for
environment variables, and replace each forward slash (/) with a backslash (\) in
directory paths. For example, on UNIX systems, the $NCHOME environment
variable specifies the path of the Netcool® home directory. On Windows systems,
the %NCHOME% environment variable specifies the path of the Netcool home
directory. The names of environment variables are not always the same in the
Windows and UNIX environments. For example, %TEMP% in Windows
environments is equivalent to $TMPDIR in UNIX environments.

If you are using the bash shell on a Windows system, you can use the UNIX
conventions.

Operating system-specific directory names

Where Tivoli Netcool/OMNIbus files are identified as located within an arch
directory under NCHOME, arch is a variable that represents your operating system
directory, as shown in the following table.

Table 1. Directory names for the arch variable

Directory name represented by arch Operating system

aix5 AIX® systems

hpux11hpia HP-UX Itanium-based systems

linux2x86 Red Hat Linux and SUSE systems

linux2s390 Linux for System z®

solaris2 Solaris systems

win32 Windows systems

About this publication xi

Fix pack information

Information that is applicable only to the fix pack versions of Tivoli
Netcool/OMNIbus are prefaced with a graphic. For example, if a set of
instructions is preceded by the graphic Fix Pack 1 , it means that the instructions
can only be performed if you installed fix pack 1 of your installed version of Tivoli
Netcool/OMNIbus. In the release notes, descriptions of known problems that are
prefaced with Fix Pack 1 are solved in fix pack 1, and so on.

Note: Fix packs are distributed separately for the server components and the Web
GUI component.

xii IBM Tivoli Netcool/OMNIbus: Administration Guide

Chapter 1. Configuring the ObjectServer

At least one ObjectServer is required to store and manage alert information in a
Tivoli Netcool/OMNIbus installation. You can configure the ObjectServer by using
its properties and command-line options. You can also configure the ObjectServer
to accept only secure connections. You can additionally configure Insert, Delete,
Update, or Control (IDUC) support, multicultural support, and automated failover
and failback.

Alert processing in the ObjectServer
Alerts are stored as rows or entries in the ObjectServer alerts.status table. Each
alert has an Identifier field that uniquely identifies the problem source. The
identifier is generated by the probe according to the specification in the probe rules
file.

When an alert is forwarded to the ObjectServer, the alerts.status table is searched
for a matching Identifier field. If no entry with the same identifier is found, a new
alert entry is inserted. The entry contains detailed information about the problem.
For example, the FirstOccurrence field indicates the time when the problem first
occurred.

If an entry with the same identifier is found, deduplication occurs. The
ObjectServer acknowledges the occurrence of the duplicate entry by adding a
count to the existing entry. By default, the ObjectServer updates the LastOccurrence
field of the existing entry with the time of the new alert, and increments the Tally
field.

Note: The V7.0, or later, Deduplication trigger takes precedence over the Update
on Deduplication setting in the probe if the Identifier field is explicitly referenced
by the trigger.

The ObjectServer can also respond automatically to specified alerts by using
automation.

You can export alert information to other applications through a gateway, and can
use a bidirectional ObjectServer gateway to provide failover support to another
ObjectServer.

Using the ObjectServer properties and command-line options
The ObjectServer reads its properties file when it starts. If a property is not
specified in this file, the default value is used unless a command-line option is
used to override it.

About the ObjectServer properties file

The default location of the properties file is $NCHOME/omnibus/etc/
servername.props. In the ObjectServer properties file, a property and its
corresponding value are separated by a colon (:). String values are surrounded by
single, straight quotation marks, for example:
Name: ’NCOMS’

© Copyright IBM Corp. 1994, 2013 1

Each ObjectServer property has a default value. In an unedited properties file, all
properties are set to the default values. At the top of the file, a list of the properties
with their default values, data types, and descriptions is provided, to act as a
reference. These properties are commented out with a number sign (#) at the
beginning of the line. Below the list of commented-out properties, another list of
properties with their default values is provided for editing purposes, if required.

Note: If you are running the ObjectServer in UTF-8 encoding on Windows, you
must also save the ObjectServer properties file in UTF-8 encoding.

Specifying ObjectServer properties

You can change the settings for ObjectServer properties in one of the following
ways:
v Edit the properties file and change the value of the required properties. Change

the entries below the commented-out list of properties. When you make changes
to the properties in the properties file, the changes do not take effect until you
restart the ObjectServer.

v Run the ALTER SYSTEM SET command from the SQL interactive interface.
v From the Netcool/OMNIbus Administrator interface, use the System menu

button and the Properties option to display the properties and edit their values.
When you use the ALTER SYSTEM SET command or Netcool/OMNIbus
Administrator to change the ObjectServer properties, changes to some of the
properties do not take effect until you restart the ObjectServer. For information
about viewing the properties that require an ObjectServer restart, see the list of
Tips that follows.

Whenever you change the ObjectServer property values by using the ALTER
SYSTEM SET command or Netcool/OMNIbus Administrator, a list of properties is
added at the bottom of the properties file to reflect your changes. As a result,
multiple entries for a property can exist within a file. The last entry for a property
takes precedence over any earlier entries.

Tips for viewing information about ObjectServer properties:

v You can query the catalog.properties table to view information about
ObjectServer properties. For example, to retrieve a list of properties that cannot
be modified, enter the following query in the SQL interactive interface:
select PropName from catalog.properties where IsModifyable=FALSE;

v Changes to some ObjectServer properties do not take effect until you restart the
ObjectServer. To retrieve a list of these properties, enter the following query:
select PropName from catalog.properties where IsImmediate=FALSE;

v You can also view information about the ObjectServer properties from the
Netcool/OMNIbus Administrator interface.

Specifying ObjectServer command-line options

When running the ObjectServer by using the nco_objserv command, you can
specify a set of command-line options. You can override both the default value and
the properties file value by changing the property value from the command line.

The command-line options for the ObjectServer use the following format:
nco_objserv [-option [value] ...]

2 IBM Tivoli Netcool/OMNIbus: Administration Guide

In this command, -option is the command-line option and value is the value to
which you are setting the option. Not every option requires you to specify a value.

You can add command-line options to nco_objserv commands in the process agent
configuration file.
Related concepts:
“Retrieving data from a table or view (SELECT command)” on page 197
Use the SELECT command to retrieve one or more rows, or partial rows, of data
from an existing table or view, and to perform grouping functions on the data.
Related tasks:
“Viewing and changing ObjectServer properties” on page 143
ObjectServer properties help to determine the behavior of the ObjectServer. You
can view and change ObjectServer properties using Netcool/OMNIbus
Administrator. You cannot add ObjectServer properties; you can only edit existing
ones.
“Defining processes, services, and hosts for process control” on page 295
To run under process control, processes, services, and hosts must be defined within
a process agent configuration file. When the process agent starts, it reads this file
to establish configuration settings.
Related reference:
“Changing the settings of the ObjectServer (ALTER SYSTEM command)” on page
205
Use the ALTER SYSTEM command to change the default and current settings of
the ObjectServer by setting properties, shut down the ObjectServer, drop user
connections, or back up the ObjectServer.
“catalog.properties table” on page 381
The catalog.properties table contains information about ObjectServer properties.

ObjectServer properties and command-line options
Use the ObjectServer properties or command-line options to configure settings for
the ObjectServer. To avoid errors, add as many properties as possible to the
properties file rather than using the command-line options. Additional utilities are
provided that you can use to encrypt the property values.

The ObjectServer properties and command-line options are described in the
following table.

Note: The Ipc.Timeout property documented here is not an ObjectServer property
but is used by various ObjectServer clients, such as gateways.

Chapter 1. Configuring the ObjectServer 3

Table 2. ObjectServer properties and command-line options

Property Command-line option Description

ActingPrimary TRUE | FALSE N/A This property is used in a failover configuration,
where a primary and backup ObjectServer are
connected by a bidirectional ObjectServer
gateway, which is used to replicate the event
data between the two ObjectServers. The
property is updated by automations only, and
must not be manually updated within the
properties file.

ActingPrimary is set to TRUE in the backup
ObjectServer for the period during which the
backup ObjectServer acts as the primary server.
Otherwise, this property is set to FALSE in the
backup ObjectServer.

ActingPrimary is always set to TRUE in the
primary ObjectServer,

AlertSecurityModel integer -alertsecuritymodel integer This property determines whether group row
level security is enforced in the event list. By
default, group row level security is disabled (0).
In this case:

v A member of the Normal group can modify a
row that is assigned to themselves or the
nobody user.

v A member of the Administrator group can
modify a row that is assigned to themselves,
the nobody user, or a member of the Normal
group.

If the AlertSecurityModel property is enabled
(1), only users in the group that owns the row
can modify the row. In this case, a member of
the Normal or Administrator group can modify
a row that is assigned to a group of which they
are a member.

A member of the System group can always
modify any row.

For more information about system and default
groups, see the IBM Tivoli Netcool/OMNIbus
Installation and Deployment Guide.

AllowConnections TRUE | FALSE -disallowconnections Specifies whether non-root users can connect to
the ObjectServer. If FALSE, no new connections
to the ObjectServer are allowed. The default is
TRUE.

AllowISQL TRUE | FALSE -disallowisql Specifies whether connections to the
ObjectServer are allowed using the SQL
interactive interface. If FALSE, no user can
connect using nco_sql. The default is TRUE.

If TRUE, this can be enabled for each user using
Netcool/OMNIbus Administrator.

4 IBM Tivoli Netcool/OMNIbus: Administration Guide

Table 2. ObjectServer properties and command-line options (continued)

Property Command-line option Description

AllowISQLWrite TRUE | FALSE -disallowisqlwrite Specifies whether modifications to the
ObjectServer are allowed using the SQL
interactive interface. If FALSE, no user can
modify the ObjectServer using nco_sql. The
default is TRUE.

If TRUE, this can be enabled for each user using
Netcool/OMNIbus Administrator.

AllowTimedRefresh TRUE |
FALSE

-allowtimedrefresh TRUE |
FALSE

This property determines whether the user can
enable timed refresh in the Refresh tab of the
Event List Preferences window. If TRUE, the
event list preferences can be set to allow alert
information to be updated at a specified interval
rather than waiting for notification of updates
from the ObjectServer. The default is FALSE.

If FALSE, the timed refresh check box is grayed
out in the Refresh tab of the Event List
Preferences window and timed refresh is
disabled.

Auto.Debug TRUE | FALSE -autodebug TRUE | FALSE If TRUE, automation debugging is enabled. The
default is FALSE.

Auto.Enabled TRUE | FALSE -autoenabled TRUE | FALSE If TRUE, automations are enabled. The default is
TRUE.

Auto.StatsInterval integer -autostatsinterval integer Specifies the interval in seconds at which the
automation system collects statistics. The default
is 60.

Statistics are gathered unless the -autoenabled
command-line option is set to FALSE, which
disables all automations.

BackupObjectServer TRUE |
FALSE

-backupserver Provides failback capability with desktop clients,
probes, the proxy server, and the ObjectServer
Gateway. The default is FALSE; the desktop
clients, probes, the proxy server, and gateways
are assumed to be connected to a primary
ObjectServer. When TRUE, the desktop clients,
probes, the proxy server, and gateways are
made aware that they are connected to the
backup ObjectServer in a failover pair. If this is
the case, the desktop clients, probes, the proxy
server, and gateways will automatically check
for the recovery of the primary ObjectServer in
the failover pair and switch back (fail back)
when it has restarted.

ClientHeartbeatDisable TRUE |
FALSE

-clienthbdisable TRUE | FALSE Disables the client heartbeating system if set to
TRUE. This causes a connected client to time out
if the ObjectServer is busy - for example, during
a gateway resynchronization or an automation.

The default FALSE setting enables heartbeating,
and prevents invalid and unnecessary client
timeouts. If the ObjectServer is active but busy,
this setting causes the ObjectServer to send a
pop-up message to a connected client, with
details of the type of processing in progress.

Chapter 1. Configuring the ObjectServer 5

Table 2. ObjectServer properties and command-line options (continued)

Property Command-line option Description

ClientHeartbeatRate unsigned -clienthbrate unsigned Sets the rate in seconds of a client heartbeat.
This rate defines how long a client should wait
for a response from the ObjectServer before
timing out. The default value is 10.

ConfigCryptoAlg string N/A Specifies the cryptographic algorithm to use for
decrypting string values (including passwords)
that were encrypted with the nco_aes_crypt
utility and then stored in the properties file. Set
the string value as follows:

v When in FIPS 140–2 mode, use AES_FIPS.

v When in non-FIPS 140–2 mode, you can use
either AES_FIPS or AES. Use AES only if you
need to maintain compatibility with
passwords that were encrypted by using the
tools provided in versions earlier than Tivoli
Netcool/OMNIbus V7.2.1.

The value that you specify must be identical to
that used when you ran nco_aes_crypt with the
-c setting, to encrypt the string values.

Use this property in conjunction with the
ConfigKeyFile property.

ConfigKeyFile string N/A Specifies the path and name of the key file that
contains the key used to decrypt encrypted
string values (including passwords) in the
properties file.

The key is used at run time to decrypt string
values that were encrypted with the
nco_aes_crypt utility. The key file that you
specify must be identical to the file used to
encrypt the string values when you ran
nco_aes_crypt with the -k setting.

Use this property in conjunction with the
ConfigCryptoAlg property.

Connections integer -connections integer Sets the maximum number of available
connections for desktop clients, probes, and
gateways.

The maximum value is 1024. The default value
is 256. Up to two connections can be used by
the system. If the ObjectServer reaches the
specified value, no further connections are
possible until some of the previously made
connections are dropped.

DeleteLogFile string -DELETES string The path and name of the delete log file, where
all delete commands are recorded if delete
logging is enabled.

By default, deletes are logged to the file
$NCHOME/omnibus/log/
servername_deletes_file.logn.

DeleteLogging TRUE | FALSE -DELETE_LOGGING TRUE | FALSE When TRUE, delete logging is enabled. The
default is FALSE.

6 IBM Tivoli Netcool/OMNIbus: Administration Guide

Table 2. ObjectServer properties and command-line options (continued)

Property Command-line option Description

DeleteLogLevel integer -DELETES_LEVEL integer The log level determines how much information
is sent to the delete log file. Possible settings
are:

v <0: No logging

v 0: Client type (application ID; for example,
ctisql for nco_sql) and SQL run. This is the
default log level.

v 1: Time, user ID, client type, and SQL run.

DeleteLogSize integer -DELETES_SIZE integer The maximum size of the delete log file. When
the log file servername_deletes_file.log1
reaches the specified size, it is renamed
servername_deletes_file.log2 and a new log
file, servername_deletes_file.log1, is created.
When the new file reaches its maximum size,
the older file is deleted and the process repeats.

The output from a single delete command is
never split between log files. Therefore, log files
can be larger than the specified size.

The default log file size is 1024 KB.

DTMaxTopRows integer -dtmaxtoprows integer The maximum number of rows that an
administrator can specify when using the View
Builder to restrict the number of rows an event
list user can view. The default is 100.

Granularity integer -granularity integer Controls the update interval, in seconds, of
IDUC broadcasts to desktops and gateways.
Reducing this value increases the update rate to
the clients. The default interval is 60 seconds. If
you require more frequent IDUC refreshes,
configure the refresh rate on the client side, for
example, in the configuration file of gateways.

If the Profile property is set to TRUE, at the end
of each granularity period, the ObjectServer
writes a summary to the profiling log of the
time spent for each client connection.

Chapter 1. Configuring the ObjectServer 7

Table 2. ObjectServer properties and command-line options (continued)

Property Command-line option Description

GWDeduplication integer -gwdeduplication integer This property controls the behavior when there
is an attempt to reinsert an existing event in the
ObjectServer. Possible values are:

0: When set to this value (the default):

v If the client is not a gateway, the number in
the Tally field is incremented.

v The LastOccurrence, Summary, and AlertKey
fields are updated with the new values and
the StateChange and InternalLast fields are
updated with the current time.

v If the new Severity is greater than 0 (clear)
and the old Severity was 0, the alert is also
updated with the new Severity value.

1: If the client is a gateway, the new event
replaces old event.

2: If the client is a gateway, the new event is
ignored.

3: When set to this value:

v For all clients, the number in the Tally field is
incremented.

v The LastOccurrence, Summary, and AlertKey
fields are updated with the new values, and
the StateChange and InternalLast fields are
updated with the current time.

v If the new Severity is greater than 0 (clear)
and the old Severity was 0, the alert is also
updated with the new Severity value.

N/A -help Displays help on the command-line options and
exits.

Iduc.ListeningHostname string -listeninghostname string Sets a host name for clients to use to locate the
ObjectServer. On systems where DNS is used,
the name returned by a host machine internally
might not be the name by which it is referred to
on the network.

For example, a computer named sfo might
actually be identified on the network as
sfo.bigcorp.org. To allow clients to connect to
the ObjectServer on sfo, set this property to
sfo.bigcorp.org.

The default is the name of the local computer,
as reported by the hostname command.

8 IBM Tivoli Netcool/OMNIbus: Administration Guide

Table 2. ObjectServer properties and command-line options (continued)

Property Command-line option Description

Iduc.ListeningPort integer -listeningport integer Sets the port for the IDUC communication
connection. This is the port on which the
ObjectServer sends updates to each event list
and gateway. If not specified, the IDUC port is
selected by the ObjectServer at random from the
unused port numbers available. The default is 0,
that is, take the next available port.

You can also specify the port in the
/etc/services file on the host machine.

Ipc.Timeout integer -ipctimeout integer Sets the time, in seconds, that a client
application or utility waits for a response from
the ObjectServer when attempting to send alerts.

If this time is exceeded, or if the ObjectServer is
down, a communication error occurs and the
alert is instead sent to the cache file.

The default is 60 seconds.

Note: This property is not an ObjectServer
property but is used by various ObjectServer
clients, such as gateways.

LogFilePoolSize integer -logfilepoolsize integer Specifies the number of log files to use if the
logging system is writing to a pool of files. This
property works only when the LogFileUsePool
property is set to TRUE. The pool size can range
from 2 to 99.

The default is 10.

This option is supported only on Windows
operating systems.

Chapter 1. Configuring the ObjectServer 9

Table 2. ObjectServer properties and command-line options (continued)

Property Command-line option Description

LogFileUsePool TRUE | FALSE -logfileusepool Specifies whether to use a pool of log files for
logging messages.

If set to TRUE, the logging system opens the
number of files specified for the pool at startup,
and keeps them open for the duration of its run.
(You define the number of files in the pool
using the LogFilePoolSize property.) When a
file in the pool reaches its maximum size (as
specified by the MaxLogFileSize property), the
logging system writes to the next file. When all
the files in the pool are at maximum size, the
logging system truncates the first file in the pool
and starts writing to it again. Files in the pool
are named using the format servername.log_ID,
where ID is a two-digit number starting from
01, to the maximum number specified for the
LogFilePoolSize property. When the logging
system starts to use a file pool, the system
writes to the lowest-available file number,
regardless of which file it was writing to when
it last ran.

The default is FALSE. When set to FALSE, the
default servername.log file is renamed
servername.log_OLD and a new log file is started
when the maximum size is reached. If the file
cannot be renamed, for example, because of a
read lock on the _OLD file, and the
LogFileUseStdErr property is set toFALSE , the
logging system automatically starts using a pool
of log files.

This option is supported only on Windows
operating systems.

LogFileUseStdErr TRUE | FALSE -logfileusestderr Specifies whether to use stderr as an output
stream for logging messages.

The default is TRUE. If this setting is TRUE and
the ObjectServer is run from the command line,
messages are logged to the console if the
ObjectServer cannot write to the default log file.
If this setting is TRUE and the ObjectServer is
running as a Windows service, messages are
written to a file named %NCHOME%\omnibus\log\
nco_objserv*.err if the ObjectServer cannot
write to the default log file.

If set to FALSE and the ObjectServer cannot write
to the default log file, messages are written to a
pool of log files, as set by the LogFileUsePool
property.
Note: The LogFileUsePool property setting
takes precedence over the LogFileUseStdErr
setting.

This option is supported only on Windows
operating systems.

10 IBM Tivoli Netcool/OMNIbus: Administration Guide

Table 2. ObjectServer properties and command-line options (continued)

Property Command-line option Description

MaxLogFileSize integer -maxlogfilesize integer Specifies the maximum size the log file can
grow to, in KB. The default is 1024 KB.

When it reaches the size specified, the
servername.log file is renamed
servername.log_OLD and a new log file is
started. When the new file reaches the
maximum size, it is renamed and the process
starts again.

MessageLevel string -messagelevel string Specifies the message logging level. Possible
values are: debug, info, warn, error, and fatal.
The default level is warn.

Messages that are logged at each level are as
follows:

v fatal: fatal only

v error: fatal and error

v warn: fatal, error, and warn

v info: fatal, error, warn, and info

v debug: fatal, error, warn, info, and debug

Tip: The value of string can be in uppercase,
lowercase, or mixed case.

MessageLog string -messagelog string Specifies the path to which messages are logged.
The default is $NCHOME/omnibus/log/NCOMS.log.

On Windows, if the system cannot write to the
specified log file (for example, as the result of a
fatal error) it writes the error to a file named
%NCHOME%\omnibus\log\nco_objserv*.err.
Note: The ObjectServer must be running as a
service. Otherwise, it cannot write errors to a
file.

N/A -name string Sets the ObjectServer name, which must be
unique. This is the name that is configured in
the Server Editor.

The default is NCOMS.

NHttpd.AccessLog string -nhttpd_accesslog string Specifies the name and location of the log file
where the server logs all requests that it
processes.

The default is $OMNIHOME/log/
NCOMS_http_access.log.

NHttpd.Authentication
Domain string

-nhttpd_authdomain string Specifies the authentication domain that is used
when requesting authentication details over the
HTTP or HTTPS connection.

The default is omnibus.

Nhttpd.BasicAuth string -nhttpd_basicauth string Specifies the user-password combination that is
permitted for connections to the HTTP interface,
where the password is an AES hash of the
password.

The default is ''.

Chapter 1. Configuring the ObjectServer 11

Table 2. ObjectServer properties and command-line options (continued)

Property Command-line option Description

Fix Pack 2 NHttpd.ConfigFile
string

-nhttpd_configfile string Specifies the path to a JSON configuration file.

The default is $OMNIHOME/etc/libnhttpd.json,
which enables mimeType settings and HTTP
headers in HTTP response files.

NHttpd.DocumentRoot string -nhttpd_docroot string Specifies the document root of the embedded
web service.

The default is $OMNIHOME/etc/restos/docroot.

NHttpd.EnableFileServing TRUE
| FALSE

-nhttpd_enablefs TRUE | FALSE Use this property to enable default file serving
by the ObjectServer. This allows the
ObjectServer to act as a simple HTTP server that
serves files from the local filesystem.

The default is FALSE.

NHttpd.EnableHTTP TRUE |
FALSE

-nhttpd_enablehttp TRUE |
FALSE

Enables use of the HTTP port.

The default is FALSE.

NHttpd.ExpireTimeout unsigned -nhttpd_exptimeout unsigned Specifies the maximum time, in seconds, that an
HTTP 1.1 connection remains idle before it is
dropped.

The default is 15.

NHttpd.ListeningHostname
string

-nhttpd_hostname string Specifies the listening host name or IP address
that can be used as the hostname part of a URI
to the ObjectServer HTTP or HTTPS interface.

The default is localhost.

NHttpd.ListeningPort integer -nhttpd_port integer Specifies the port on which the ObjectServer
listens for HTTP requests.

The default is 0.

NHttpd.NumWorkThreads integer -nhttpd_numworkthrs integer Specifies the number of threads in the client
handling thread pool.

The default is 5.

NHttpd.SSLEnable TRUE | FALSE -nhttpd_sslenable TRUE |
FALSE

Enables the use of SSL support.

The default is FALSE.

NHttpd.SSLListeningPort integer -nhttpd_sslport integer Specifies the port on which the ObjectServer
listens for HTTPS requests.

The default is 0.

NHttpd.SSLCertificate string -nhttpd_sslcert string Specifies the name of the SSL certificate of the
server.

The default is ''.

NHttpd.SSLCertificatePwd
string

-nhttpd_sslcertpwd string Specifies the password required to access the
SSL certificate file.

The default is ''.

12 IBM Tivoli Netcool/OMNIbus: Administration Guide

Table 2. ObjectServer properties and command-line options (continued)

Property Command-line option Description

NRestOS.Enable TRUE | FALSE -nrestosenable TRUE | FALSE Enables the HTTP interface and the OSLC
interface to the ObjectServer.

The default is FALSE, which means that the
interfaces are disabled.

Fix Pack 2

NRestOS.OSLCRDFMsgFormat
string

nrestososlcrmf string Set this property to the string MIGRATION to
redevelop any utilities that are based on the
ObjectServer OSLC interface so that the
members resource reference list is generated in a
Collection resource instance instead of a
ResponseInfo resource instance in the
RDF/XML payload of the Event, Detail, and
Journal query capability.

The MIGRATION setting means that the members
resource reference list is generated in both a
Collection and a ResponseInfo resource
instance. Redevelop your OSLC utilities to
generate the members resource reference list
only in the Collection resource instance. After
the code that generates the list in ResponseInfo
resource instance is removed, reset this property.

NRestOS.OSLCResource
ConfigFile string

-nrestososlcrescfg string The path to the OSLC resource configuration
file. This JSON file defines how columns from
the ObjectServer schema are mapped to
properties in the OSLC event domain.

The default is $OMNIHOME/etc/restos/
resourcecfg.json.

OldTimeStamp TRUE | FALSE -oldtimestamp TRUE | FALSE Specifies the timestamp format to use in the log
file.

Set the value to TRUE to display the timestamp
format that is used in Tivoli Netcool/OMNIbus
V7.2.1, or earlier. For example: dd/MM/YYYY
hh:mm:ss AM or dd/MM/YYYY hh:mm:ss PM
when the locale is set to en_GB on a Solaris 9
computer.

Set the value to FALSE to display the ISO 8601
format in the log file. For example:
YYYY-MM-DDThh:mm:ss, where T separates the
date and time, and hh is in 24-hour clock. The
default is FALSE.

PA.Name string -pa string Sets the process control agent name. This name
must consist of 29 or fewer uppercase letters
and cannot begin with an integer. When an
external procedure is run from an automation,
the ObjectServer can start an external process.
To start the process, the ObjectServer contacts a
process control agent. The default name for the
process control agent is NCO_PA.

Chapter 1. Configuring the ObjectServer 13

Table 2. ObjectServer properties and command-line options (continued)

Property Command-line option Description

PA.Password string -papassword string Specifies the password for the user connecting
to a process control agent to run external
procedures in automations. The default is ''.
Note: If running external procedures, the
process control daemon must be able to
authenticate the user. Therefore, a valid
combination, which can be authenticated by the
daemon, must be specified in the string values
for PA.Username and PA.Password properties.
Otherwise, the connection to the process control
agent and the running of the external procedure
will fail.

PA.Username string -pausername string Specifies the user name for connecting to a
process control agent to run external procedures
in automations. A value must be specified when
the process control agent is running in secure
mode. The default is root.

On Windows, specify the user name of a valid
local account, domain account, or UPN account.

On UNIX, any user who requires access to the
process control system must be a member of a
UNIX user group (default ncoadmin) that you
identify as an administrative group for this
purpose. Note that if using Pluggable
Authentication Modules (PAM) for
authentication, users do not have to be a
member of a UNIX user group such as
ncoadmin, to gain access to the process control
system.

PasswordEncryption string -pwdenc string This property defines the encryption scheme
that is used to encrypt user passwords that are
stored in the ObjectServer. Possible values are as
follows:

v DES: Data Encryption Standard encryption.
Only the first eight characters of a
DES-encrypted password are read. Additional
characters are ignored.

v AES: Advanced Encryption Standard (AES128)
encryption. Only the first 16 characters of an
AES128-encrypted password are read.
Additional characters are ignored. In FIPS
140–2 mode, the AES option is mandated by
the system.

For non FIPS 140-2 installations, the default is
DES. For FIPS 140-2 mode, the default is AES.

14 IBM Tivoli Netcool/OMNIbus: Administration Guide

Table 2. ObjectServer properties and command-line options (continued)

Property Command-line option Description

PasswordFormat string -pwdformat string The property defines the format of user
passwords. It works only when the
RestrictPasswords property is set to TRUE.

Specify the value of the this property as a
colon-separated set of integer values. Each value
defines a password requirement. The format
is:min_len:alpha_num:digit_num:punct_numtwhere:

v min_len is the password length.

v alpha_num is the minimum number of
alphabetic characters.

v digit_num is the minimum number of numeric
characters.

v punct_num is the minimum number of
punctuation characters.

The default value of 8:1:1:0 indicates that a
password must be at least 8 characters long, and
contain at least 1 alphabetic character and at
least one numeric character. The password need
not contain any punctuation characters.
Note: The minimum alphabetic, numeric, and
punctuation character requirements must be
satisfied within the number of characters
specified by the minimum password length. The
default value of 8:1:1:0 must contain 1
alphabetic character and 1 numeric character in
the first 8 characters of the password string.

For example, if the property is set to 8:1:1:0
and a user specifies the password
abcdefgh590675, the password is rejected
because the first 8 characters contains no
numeric characters.

After this property is set, the ObjectServer
validates all new or changed passwords against
this requirement and passwords that do not
meet the requirement are rejected. Existing
passwords are not validated.

ProfileStatsInterval integer -profilestatsinterval integer Specifies the interval in seconds at which the
profiler writes information to the profile log file.
The default is 60 seconds.

Profile TRUE | FALSE -profile Controls ObjectServer profiling. If TRUE, the
amount of time it takes for clients to run SQL is
logged to the catalog.profiles table. The default
is TRUE.

The profile statistics are also logged to the file
$NCHOME/omnibus/log/
servername_profiler_report.logn every profile
statistics interval.

Props.CheckNames TRUE | FALSE N/A When TRUE, the ObjectServer does not run if any
specified property is invalid. The default is TRUE.

Chapter 1. Configuring the ObjectServer 15

Table 2. ObjectServer properties and command-line options (continued)

Property Command-line option Description

N/A -propsfile string Sets the ObjectServer properties file name. The
default name is servername.props, where the
servername is defined by the -name option.

RegexpLibrary string -regexplib string Defines which regular expression library to use
for the ObjectServer. Possible values are:
NETCOOL and TRE.

The default value of NETCOOL is useful for
single-byte character processing and is provides
optimal system performance.

To enable the use of the extended regular
expression syntax on single-byte and multi-byte
character languages, set the value to TRE. This
setting results in decreased system performance.

RestrictionFiltersAND TRUE |
FALSE

-restrictfiltersand Controls how user restriction filters and group
restriction filters are concatenated. This property
is set for the system and not per user, and
changes to the property setting come into effect
only after you restart the ObjectServer.

The values for this property are as follows:

v TRUE: All restriction filters are combined using
the AND operator. The default is TRUE.
Example:

user_rf AND group1 AND group2

v FALSE: All restriction filters are combined
using the OR operator. Example:

user_rf OR group1 OR group2

RestrictionUpdateCheck TRUE |
FALSE

-norestrictionupdatecheck When FALSE, users with restriction filters
applied can update alerts that will not appear in
their view after the update. The default is TRUE.

RestrictPasswords TRUE |
FALSE

-restrictpasswords TRUE |
FALSE

When TRUE, the format specified by the
PasswordFormat property is enforced.

The default is FALSE.

RestrictProxySQL TRUE | FALSE -restrictproxysql When TRUE, connections from a proxy server are
restricted in the ObjectServer SQL commands
that can be run. The only modifications to
ObjectServer data that can be made are inserts
into the alerts.status and alerts.details tables.
The default is FALSE.

If FALSE, connections from a proxy server can
run any ObjectServer SQL commands.

Sec.AuditLevel string -secauditlevel string Specifies the level of security auditing
performed. Possible values are debug, info, warn,
and error. The default is warn.

The debug and info levels generate messages for
authentication successes and failures, while warn
and error levels generate messages for
authentication failures only.

16 IBM Tivoli Netcool/OMNIbus: Administration Guide

Table 2. ObjectServer properties and command-line options (continued)

Property Command-line option Description

Sec.AuditLog string -secauditlog string Specifies the file to which audit information is
written. The default is $NCHOME/omnibus/log/
servername/audit.log.

Sec.ExternalAuthentication
string

-authenticate string Controls which authentication module is used to
authenticate users. The values are:

v none: Use this value to perform user
authentication against the user names and
passwords that are stored in the ObjectServer.
This setting disables external authentication.

v LDAP: Use this value to externally authenticate
users whose credentials are stored in a
Lightweight Directory Access Protocol
(LDAP) repository.

v PAM: Use this value to authenticate users by
using the supplied Tivoli Netcool/OMNIbus
PAM, or to externally authenticate users by
using a third-party PAM configuration (such
as the operating system, or a PAM
configuration that is set up to use LDAP
credentials).

On UNIX and Linux, the default is PAM. On
Windows, the default is none.

SecureMode TRUE | FALSE -secure Sets the security mode of the ObjectServer. If
TRUE, the ObjectServer authenticates probe,
gateway, and proxy server connection requests
with a user name and password. Other client
connection requests are always authenticated
with a user name and password.

Store.LocalizedSort TRUE |
FALSE

-storelocalesort Defines whether localized sorting is enabled or
disabled.

The default is FALSE, which disables localized
sorting in favor of standard C library (libc)
string comparisons. For example, Å will be
treated as a variant of A and the two characters
will sort near each other. Use this default setting
for optimal system performance.

Set the value to TRUE to enable localized sorting.
For example, in a Danish locale, Å will be
treated as a separate letter that sorts just after Z.
Note that specifying this setting results in
decreased system performance.

Chapter 1. Configuring the ObjectServer 17

Table 2. ObjectServer properties and command-line options (continued)

Property Command-line option Description

Store.
LocalizedSortCaseSensitive
string

-storecasesort string Controls case sensitivity in localized sorting.
This property is applicable only when
Store.LocalizedSort is TRUE.

The values are:

v OFF: Sorting is case-insensitive, and uppercase
and lowercase letters are ordered in
accordance with their tertiary sort weights.

v UPPERFIRST: Uppercase characters are sorted
before lowercase characters. For example,
Account is sorted before account.

v LOWERFIRST: Lowercase characters are sorted
before uppercase characters. For example,
account is sorted before Account.

The default is OFF.

UniqueLog TRUE | FALSE -uniquelog If TRUE, the log file is uniquely named by
appending the process ID of the ObjectServer to
the default log file name. For example, if the
NCOMS ObjectServer is running as process
1234, the log file is named NCHOME/omnibus/log/
NCOMS.1234.log. The default is FALSE.

If the MessageLog property is set to stderr or
stdout, the UniqueLog property is ignored.

N/A Windows

-utf8enabled TRUE | FALSE

Controls the encoding of data that is passed
into, or generated by, this application on
Windows.

Set the value of -utf8enabled to TRUE to run the
application in the UTF-8 encoding. The default
is FALSE, which causes the default system code
page to be used.
Important: Although a UTF8Enabled property is
available, an attempt to enable UTF-8 encoding
by setting this property to TRUE has no effect. To
run in a UTF-8 encoding on Windows, you must
always use the -utf8enabled command-line
option.
Note: When running in UTF-8 encoding, do not
set the OldTimeStamp property to TRUE.

18 IBM Tivoli Netcool/OMNIbus: Administration Guide

Table 2. ObjectServer properties and command-line options (continued)

Property Command-line option Description

WTPasswordCheck string -wtpasswordcheck string Controls how passwords are checked by the
ObjectServer when received from clients.

This property is useful when ObjectServer users
are externally authenticated. Possible values for
the property are:

v plain: Passwords are assumed to be in plain
text. (Applicable to Netcool/Webtop 1.3
clients only.)

v encrypted: Passwords are assumed to be in an
encrypted format. (Applicable to
Netcool/Webtop 1.3 clients only.)

v default: Passwords are initially assumed to
be in plain text. If the ObjectServer check
fails, passwords are assumed to be in an
encrypted format. (Applicable to
Netcool/Webtop 1.3 clients only.)

v allplain: Passwords are assumed to be in
plain text. If the login fails with the plain text
password, no second attempt is made.
(Applicable to clients other than
Netcool/Webtop 1.3.)

v allencrypted: Passwords are assumed to be
in an encrypted format and are decrypted
before authentication. If the login fails with
the decrypted password, no second attempt is
made. (Applicable to clients other than
Netcool/Webtop 1.3.)

N/A -version Displays version information for the
ObjectServer and exits.

Note: The nco_objserv command includes advanced properties that must only be
used under direction from IBM Software Support. These properties are not
documented.

Running the ObjectServer in secure mode
You can run the ObjectServer in secure mode. When you specify the -secure
command-line option, the ObjectServer authenticates probe, gateway, and proxy
server connections by requiring a user name and password.

When a connection request is sent, the ObjectServer issues an authentication
message. The probe, gateway, or proxy server must respond with the correct user
name and password combination.

If you do not specify the -secure option, probe, gateway, and proxy server
connection requests are not authenticated.

Note: Connections from other clients, such as the event list and SQL interactive
interface, are always authenticated.

When connecting to a secure ObjectServer:

Chapter 1. Configuring the ObjectServer 19

v Each probe or proxy server that makes a connection must have the AuthUserName
and AuthPassword properties specified in its properties file.

v Each unidirectional gateway that uses a properties file must have values
specified for the Gate.Writer.Username, Gate.Writer.Password,
Gate.Reader.Username, and Gate.Reader.Password properties. Each bidirectional
gateway that uses a properties file must have values specified for the
Gate.ObjectServerA.Username, Gate.ObjectServerA.Password,
Gate.ObjectServerB.Username, and Gate.ObjectServerB.Password properties.
Each gateway that uses a configuration file must have values specified for the
AUTH_USER and AUTH_PASSWORD commands in the gateway configuration
file.

If the user name and password combination is incorrect, the ObjectServer issues an
error message and rejects the connection.

You can choose any valid user name for the AuthUserName, Gate.Writer.Username,
Gate.Reader.Username, Gate.ObjectServerA.Username, or
Gate.ObjectServerB.Username property, or the AUTH_USER command.

Password encryption details for running in FIPS 140–2 mode and non-FIPS 140–2
mode are described in the following table.

Table 3. Password encryption in FIPS 140–2 mode and non-FIPS 140–2 mode

Mode Action

FIPS 140–2 mode When in FIPS 140–2 mode, passwords can either be specified in plain
text or in encrypted format. You can encrypt passwords by using
property value encryption, as follows:

1. If you do not yet have a key for encrypting the password, create
one by running the nco_keygen utility, which is located in
$NCHOME/omnibus/bin.

2. Run the nco_aes_crypt utility to encrypt the password with the key
that was generated by the nco_keygen utility. The nco_aes_crypt
utility is also located in $NCHOME/omnibus/bin. Note that you must
specify AES_FIPS as the algorithm to use for encrypting the
password.

3. Open the properties file to which you want to add the encrypted
password and specify this encrypted output for the AuthPassword
setting.
Note: You must also set the ConfigKeyFile property to the key file
that you specified when running nco_aes_crypt, and set the
ConfigCryptoAlg property to the encryption algorithm used.

20 IBM Tivoli Netcool/OMNIbus: Administration Guide

Table 3. Password encryption in FIPS 140–2 mode and non-FIPS 140–2 mode (continued)

Mode Action

Non-FIPS 140–2
mode

When in non-FIPS 140–2 mode, passwords can either be specified in
plain text or in encrypted format. However, the client always transmits
encrypted login information irrespective of the password encryption
that is used in the properties file. You can encrypt passwords by using
the nco_g_crypt utility or by using property value encryption, as
follows:

v To encrypt a password by using the nco_g_crypt utility, run the
command as follows:

$NCHOME/omnibus/bin/nco_g_crypt plaintext_password

In this command, plaintext_password represents the unencrypted form
of the password. The nco_g_crypt utility takes the unencrypted
password and displays an encrypted version. Open the properties file
to which you want to add the encrypted password and specify this
encrypted output for the AuthPassword setting.

v To encrypt a password by using property value encryption, you
require a key that is generated with the nco_keygen utility. You can
then run nco_aes_crypt to encrypt the password with the key. Note
that you can specify either AES_FIPS or AES as the algorithm for
encrypting the password. Use AES only if you need to maintain
compatibility with passwords that were encrypted using the tools
provided in versions earlier than Tivoli Netcool/OMNIbus V7.2.1.

Open the file to which you want to add the encrypted password and
specify this encrypted output for the AuthPassword setting.
Note: You must also set the ConfigKeyFile property to the key file
that you specified when running nco_aes_crypt, and set the
ConfigCryptoAlg property to the encryption algorithm used.

A password encrypted with nco_g_crypt is specified in the same way as an
unencrypted password when connecting to the ObjectServer. The ObjectServer
automatically detects an encrypted password and performs the necessary
decryption to verify the password during authentication.

Attention: Passwords encrypted with nco_g_crypt can be used in the same way
as unencrypted passwords to access the ObjectServer. Therefore, you must set
appropriate permissions on any files containing encrypted passwords to prevent
unauthorized access. Alternatively, passwords that have been encrypted with
nco_g_crypt must be further encrypted with nco_aes_crypt, and permissions on
the key file must be set appropriately.

For further information about using property value encryption, see the IBM Tivoli
Netcool/OMNIbus Installation and Deployment Guide. For information on running
probes and gateways in secure mode, see the IBM Tivoli Netcool/OMNIbus Probe and
Gateway Guide.

Chapter 1. Configuring the ObjectServer 21

Related reference:
“Running the proxy server in secure mode” on page 44
You can run the proxy server in secure mode. When you specify the SecureMode
property or the -secure command-line option, the proxy server authenticates probe
connections by requiring a user name and password.
“Proxy server properties and command-line options” on page 40
The proxy server reads its properties file when it starts. If a property is not
specified in this file, the default value is used unless a command-line option is
used to override it. The default location of the properties file is
$NCHOME/omnibus/etc/proxyserver.props.

Client tool updates using IDUC
A large quantity of data passes between the ObjectServer and a desktop client each
time an event list is updated. To prevent the ObjectServer from becoming
overloaded with requests for event list updates, the ObjectServer sends a prompt
to the desktop client whenever an update is needed. The desktop then requests the
updated data from the ObjectServer.

This prompt is sent to the desktop through a communication link that uses an
Insert, Delete, Update, or Control (IDUC) communication protocol. The prompt
instructs the desktop to refresh all of the event list displays. The IDUC protocol
updates gateways in the same way.

The desktop client connects to the ObjectServer using the port defined by the
interfaces file to establish the IDUC communication link. The desktop receives the
socket number of the IDUC connection on which it will receive the ObjectServer
prompts for the updates.

Specifying the IDUC update interval
The update interval is controlled by the ObjectServer Granularity property or
-granularity command-line option, which is set to 60 seconds by default. The
default value is optimal for most systems. Reducing it improves the response time
of the client tools but greatly increases network traffic and ObjectServer load.

If you require more frequent IDUC refreshes, configure the refresh rate on the
client side, for example, in the configuration file of gateways.

Specifying the IDUC port
By default, when an ObjectServer starts, an available port number is chosen for the
IDUC connection. You can also specify the IDUC port to use. You must specify the
IDUC port when accessing an ObjectServer protected by a firewall.

To define these ports, update the following file for your operating system:

v UNIX Linux /etc/services

v Windows %SystemRoot%\system32\drivers\etc\services

The services file has an entry for each ObjectServer in the following format:
nco_servername nnnn/tcp

Where servername is the name of the ObjectServer and nnnn is the port number.

22 IBM Tivoli Netcool/OMNIbus: Administration Guide

You can set the port to any unused number outside the range from 1 to 1024,
which are generally reserved as system numbers.

UNIX Linux When the /etc/services file is managed by Network
Information Service (NIS), you must make the entry in the NIS services file and
then copy the updated configuration to all host computers.

You can also use the -listeningport option on the ObjectServer command line to
specify the IDUC port.

Example entries for ObjectServers called NCOMS and DENCO are as follows:
nco_NCOMS 7070/tcp
nco_DENCO 7071/tcp

Configuring the ObjectServer for multicultural support
Tivoli Netcool/OMNIbus supports a variety of single-byte and multi-byte character
encodings for use in different locales.

About this task

The following ObjectServer properties are relevant for multi-byte character
processing:
v Store.LocalizedSort: Use this property to enable localized sorting. Localized

sorting is disabled by default for optimal system performance.
v Store.LocalizedSortCaseSensitive: Use this property to control case sensitivity

in localized sorting.
v RegexpLibrary: Use this property to enable use of the POSIX 1003.2 extended

regular expression library (TRE). The standard NETCOOL regular expression
library is enabled by default for optimal system performance.

You can set these properties in either of the following ways:
v Set the properties in the ObjectServer properties file $NCHOME/omnibus/etc/

servername.props, where servername is the name specified for the ObjectServer
during its creation.

v Change the settings from the command line when starting the ObjectServer with
the nco_objserv command. The command-line option for the
Store.LocalizedSort property is -storelocalesort. The command-line option
for the Store.LocalizedSortCaseSensitive property is -storecasesort. The
command-line option for the RegexpLibrary property is -regexplib.

Note: If your user name and password are being verified against an external
authentication source, you must check whether this source also supports multi-byte
characters. If multi-byte characters are not supported, you must specify user names
and passwords with ASCII characters.

The names of the following ObjectServer objects are restricted to ASCII characters,
starting with a letter or underscore, and continuing with letters, digits, and
underscores:
v Memstores
v Databases
v Tables
v Columns

Chapter 1. Configuring the ObjectServer 23

v Restriction filters
v Privileges
v Trigger groups
v Triggers
v Signals
v Procedures
v Parameters
v Variables
v Properties
v File objects

File object names are restricted to the specified ASCII characters, whereas file
path names are restricted to characters that are supported by the operating
system. The character encoding that is used to create the files is the encoding
that is used by the ObjectServer; this encoding might differ from that of the
client.

For further information about multicultural support for Tivoli Netcool/OMNIbus,
see the IBM Tivoli Netcool/OMNIbus Installation and Deployment Guide.
Related reference:
“ObjectServer properties and command-line options” on page 3
Use the ObjectServer properties or command-line options to configure settings for
the ObjectServer. To avoid errors, add as many properties as possible to the
properties file rather than using the command-line options. Additional utilities are
provided that you can use to encrypt the property values.

Protecting the ObjectServer against event floods
Configure event flood control so that the ObjectServer can detect when it is at risk
of being overloaded by connected clients and send a message to the clients to
instruct them to take remedial action.

About this task

Two metrics are used to calculate the load on the ObjectServer from connected
clients. An average is calculated over a specified time period and thresholds are
applied to determine whether the ObjectServer should activate flood control. By
default, for each metric, the average is calculated every 60 seconds, over a 300
second period. If the average is in excess of the threshold for both metrics then
flood control is invoked and an event is raised. These metrics, thresholds, and
default values are described in the following table.

Table 4. Metrics and thresholds used to determine when to activate event flood control

Metric Threshold Description

Time that is spent by the
ObjectServer processing
requests from clients

Time that is spent over a
60-second period. The
default is 40 seconds.

To calculate the value, the
catalog.profiles table is read.

Time that is spent by the
ObjectServer in triggers.

Time that is spent over a
60-second period. The
default is 30 seconds.

To calculate the value, the
catalog.trigger_stats table is
read.

24 IBM Tivoli Netcool/OMNIbus: Administration Guide

By default, flood control mode is deactivated again at the point when processing
time falls below both defined thresholds, and flood control has been activated for
300 seconds. A resolution event is raised when flood control is deactivated.

All default values are configurable.

Configuration for event flood protection is supplied in the $NCHOME/omnibus/
extensions/eventflood/flood_control.sql file. To configure event flood
protection, apply this file to the ObjectServer schema. The configuration contains
the default values.

Procedure

To configure event flood control:
1. Change to the $NCHOME/omnibus/extensions/eventflood directory and copy the

flood_control.sql file to a preferred location.
2. To change the default values for event flood protection, open the file and edit

the content at the points that are described in the following table.

Table 5. Default values in the flood_control.sql file to edit to change flood control
protection values

Code section Description

set window_size = 5; The time, in minutes, over which the
average values are calculated for the metrics.
The default is 5.

if(avg_trigger_per >= 0.5) The threshold, expressed as a fraction of a
minute, for time that is spent in triggers.
The default is 0.5, that is, 30 seconds in a
minute.

if(avg_client_per >= 0.66) The threshold, expressed as a fraction of a
minute, for time that spent processing SQL
requests from clients. The default is 0.66,
that is, 40 seconds in a minute.

if(elapsed >= 300) The time, in seconds that must elapse after
the flood protection values fell below the
defined thresholds before flood protection
mode is deactivated.

’ObjectServer ’ + getservername() + ’ is
currently in flood’,

The text for the event that is raised when
the ObjectServer enters flood control. Do not
change the ’ + getservername() + ’
element.

’ObjectServer ’ + getservername() + ’ is
ending flood control’,

The text for the resolution event that is
raised when flood control is deactivated.

3. Apply the configuration for event flood protection to the ObjectServer schema
by running the SQL interactive interface and issuing the following command:

UNIX Linux $NCHOME/omnibus/bin/nco_sql -user username -password
password -server servername < directory_path/flood_control.sql

Windows "%NCHOME%\omnibus\bin\isql" -U username -P password -S
servername -i directory_path/flood_control.sql

Where username is a valid user name, password is the corresponding password,
servername is the name of the ObjectServer, and directory_path is the fully
qualified directory path to the .sql file.

Chapter 1. Configuring the ObjectServer 25

Related reference:
“catalog.profiles table” on page 381
The catalog.profiles table contains timing information for running SQL commands
from client connections.
“catalog.trigger_stats table” on page 384
The catalog.trigger_stats table stores timing information about triggers, including
the number of times the trigger has been raised and the number of times the
trigger has fired. These statistics are gathered unless the automation system is
disabled by setting the -autoenabled command-line option to FALSE.

Data storage and checkpointing
ObjectServer data is stored in memory for high-speed access. The ObjectServer
supports data persistence by using checkpoints and logs to copy the data in
memory to disk. This enables you to recover the data after a planned or
unexpected shutdown occurs.

Data storage using memstores
Memstores are containers that are maintained by the ObjectServer and hold
ObjectServer tables and data in memory.

The ObjectServer uses the memstores described in the following table.

Table 6. Memstores

Memstore name Storage type Description

MASTER_STORE Persistent Used to store internal descriptions of
ObjectServer data.

TABLE_STORE Persistent Used to store information for the
desktop, including the alerts.status
table.

TEMP_STORE Transient Used to store data that does not need
to be persistent. System tables that
contain configuration information are
stored here and recreated on startup.

VIRTUAL_STORE Virtual Used mainly to catalog rapidly
changing data; for example, data
about connected clients.

You can change the size of the table_store memstore by using the
nco_store_resize utility.
Related reference:
“Changing the table_store memstore soft and hard limits” on page 29
If the alerts database becomes exceptionally large, you can use a command to
change the soft and hard limits.

26 IBM Tivoli Netcool/OMNIbus: Administration Guide

Introduction to checkpointing
The ObjectServer supports data persistence by using checkpoints and logs to copy
the data in memory to disk. This enables you to recover the data after a planned or
unexpected shutdown occurs.

The following types of files are maintained on disk:
v Checkpoint files, containing the data for entire tables
v Replay logs, containing the changes made to tables since the last checkpoint

Every 60 seconds, a checkpoint occurs, and all persistent data is copied to
checkpoint files. Between checkpoints, new and changed data is written to replay
log files.

Checkpoints also occur each time there is a planned ObjectServer shutdown.

Checkpoint file creation
Checkpoint files are generated for each persistent memstore. Only persistent
memstores are checkpointed.

Checkpoint files are named as follows:
v $NCHOME/omnibus/db/servername/storename_0.chk

v $NCHOME/omnibus/db/servername/storename_1.chk

Replay logs are also generated for each persistent memstore. The replay files are
named as follows:
v $NCHOME/omnibus/db/servername/storename_0.log

v $NCHOME/omnibus/db/servername/storename_1.log

The checkpoint process writes alternately to the _0.chk and _1.chk files. If one file
is corrupted during an unexpected shutdown, the data in the other checkpoint file
and the replay logs is used to rebuild the database tables in memory. As each
checkpoint starts, the logging process switches to the alternate log file. The older
log file is deleted before the start of the next checkpoint.

When a planned ObjectServer shutdown occurs (because the ALTER SYSTEM
SHUTDOWN command is run), a .tab file is created for each persistent memstore.
This file is named storename.tab.

For example, the .tab file for the master store in the NCOMS ObjectServer is
named:

$NCHOME/omnibus/db/NCOMS/MASTER_STORE.tab

The format of these files is specific to the hardware and operating system on which
they were created.

Chapter 1. Configuring the ObjectServer 27

Data recovery during ObjectServer startup
When the ObjectServer is restarted after a planned shutdown, the database is
rebuilt using the .tab files.

When the ObjectServer is restarted after an unexpected shutdown, the database is
rebuilt using the checkpoint (.chk) and replay log (.log) files.

nco_check_store checkpoint verification utility
The nco_check_store utility verifies that existing checkpoint files are valid. It is
intended to be used by automations and can be used only to check ObjectServer
stores that are not currently in use.

The nco_check_store utility reports the validity of the checkpoint files with the
following return codes:
v 0: Success. The checkpoint files are valid.
v 1: Failure. The checkpoint files are not valid and must not be used.

You can also use the nco_check_store utility from the command line. When
invoked from the command line, you must set the message logging level to info to
display the progress and results of the test.

Note: Do not run nco_check_store when the ObjectServer is running.

The command-line options for nco_check_store are described in the following
table.

Table 7. Checkpoint verification utility command-line options

Command-line option Description

-help Displays help on the command-line options and exits.

-memstoredatadirectory string Specifies the path to the ObjectServer database. The
default is $NCHOME/omnibus/db.

-messagelevel string Specifies the message logging level. Possible values are:
debug, info, warn, error, and fatal. The default level is
error.

Messages that are logged at each level are as follows:

v fatal: fatal only

v error: fatal and error

v warn: fatal, error, and warn

v info: fatal, error, warn, and info

v debug: fatal, error, warn, info, and debug

Tip: The value of string can be in uppercase, lowercase,
or mixed case.

-messagelog string Specifies the path to which messages are logged. The
default is stderr.

-server string Specifies the name of the ObjectServer database to verify.
The default is NCOMS.

-version Displays version information on the checkpoint
verification utility and exits.

28 IBM Tivoli Netcool/OMNIbus: Administration Guide

Example usage

To use nco_check_store from within an automation to check that backup files
created by the ObjectServer are valid, set the -memstoredatadirectory
command-line option to the directory that contains the backup.

Changing the table_store memstore soft and hard limits
If the alerts database becomes exceptionally large, you can use a command to
change the soft and hard limits.

If the alerts database becomes exceptionally large, the following message is
displayed:
Region soft limit exceeded

This means that the table_store memstore, where alert table data is stored, has
reached its maximum size. You can use the ALTER MEMSTORE command to
change the soft limit. For example, in nco_sql, enter:
ALTER MEMSTORE table_store SET SOFT LIMIT 500 M;

The soft limit cannot be set to a larger size than the hard limit, which you can
change using the nco_store_resize utility. This utility enables you to change the
hard limit for the table_store memstore for the specified ObjectServer.

Note: Before you run the nco_store_resize utility, you must back up the
ObjectServer by using the ALTER SYSTEM BACKUP command, and then shut
down the ObjectServer.

The command-line options for the nco_store_resize utility are described in the
following table.

Table 8. Memstore resize utility command-line options

Command-line option Description

-help Displays help on the command-line options and exits.

-messagelevel string Specifies the message logging level. Possible values are:
debug, info, warn, error, and fatal. The default level is
error.

Messages that are logged at each level are as follows:

v fatal: fatal only

v error: fatal and error

v warn: fatal, error, and warn

v info: fatal, error, warn, and info

v debug: fatal, error, warn, info, and debug

Tip: The value of string can be in uppercase, lowercase,
or mixed case.

-messagelog string Specifies the path to which messages are logged. The
default is stderr.

Chapter 1. Configuring the ObjectServer 29

Table 8. Memstore resize utility command-line options (continued)

Command-line option Description

-newhardlimit integer Specifies the new hard limit for the memstore, in MB.
The default is 500 MB. You cannot set a hard limit that is
larger than the maximum memstore size. If you exceed
the store size, the hard limit is truncated to the
maximum permitted memstore size.

The maximum permitted memstore size (in MB) for the
associated platform is shown below:

v AIX: 2047

v HPUX: 1024

v Linux x86: 2047

v Solaris: 2047

v Windows: 700

v zLinux: 1024

-server string Specifies the name of the ObjectServer for which the
memstore size will be increased. The default is NCOMS.

-version Displays version information on the checkpoint
verification utility and exits.

Related reference:
“Changing the settings of the ObjectServer (ALTER SYSTEM command)” on page
205
Use the ALTER SYSTEM command to change the default and current settings of
the ObjectServer by setting properties, shut down the ObjectServer, drop user
connections, or back up the ObjectServer.

Using nco_postmsg to send alerts to ObjectServers
You can send an alert to an ObjectServer by using the nco_postmsg utility. You can
use this utility as a replacement for the IBM Tivoli Enterprise Console postemsg
utility and the postzmsg utility.

The nco_postmsg utility accepts name-value pairs for the alert data and constructs
an SQL INSERT statement. The statement is used to insert a new row of data into
a specified database table in the ObjectServer.

You can run nco_postmsg from the command line, or you can develop scripts or
automations that use the nco_postmsg command to send alerts to the ObjectServer.
The frequency of execution can vary. If you run the utility from the command-line
interface, the utility might run a few times a day. If the utility is run from a script,
it might be run a few times a second. Multiple instances of the nco_postmsg utility
can also run simultaneously. Some usage examples of the nco_postmsg utility are as
follows:
v You can use nco_postmsg to send single alerts to the ObjectServer for diagnostic

or testing purposes; for example, during system configuration, or when
troubleshooting alert delivery problems.

v You can use nco_postmsg to send alerts that indicate the start and end of a
maintenance period.

v You can use nco_postmsg when feedback from an external automation is needed
in the ObjectServer. For example, if an alert is received that causes an external
automation to run. The external automation fires a script that performs an

30 IBM Tivoli Netcool/OMNIbus: Administration Guide

action, and the success or failure of this action needs to be recorded in the
ObjectServer. You can include an nco_postmsg command in the script to insert a
new alert with the status of the action, and additionally set up automations in
the ObjectServer to process the new alert.

The nco_postmsg utility is installed with the Probe Support feature of Tivoli
Netcool/OMNIbus, and can therefore be deployed separately from the other Tivoli
Netcool/OMNIbus features, on one or more hosts. A properties file called
nco_postmsg.props is available for the utility.

The nco_postmsg utility can establish a secure connection to the ObjectServer by
using SSL in both FIPS 140-2 mode and non-FIPS 140-2 mode.

To send an alert to an ObjectServer, enter the following command:

$NCHOME/omnibus/bin/nco_postmsg [-option [value] ...]
"column_name=column_value" ...

Where:
v -option is the nco_postmsg command-line option and value is the value to which

you are setting the option. Not every option requires you to specify a value.
v column_name is a valid column name in the database table into which you want

to insert the alert, and column_value is the matching data value that you want to
insert. Each name-value pair for column_name=column_value must be enclosed in
double quotation marks, as shown in the syntax for the command. Additionally,
column_value must be enclosed in single quotation marks if it is a string value.

Note: If you are sending an alert to the alerts.status table, a name-value pair for
the Identifier field is mandatory. For more information about setting a value for
the Identifier column, see the IBM Tivoli Netcool/OMNIbus Integration Best
Practices document at https://www-304.ibm.com/jct01003c/software/
brandcatalog/portal/opal/details?catalog.label=1TW10NC10.
When you specify column_value, use a data type that is appropriate for the
ObjectServer field. Use Netcool/OMNIbus Administrator to verify the data types
that are assigned to fields in database tables, or you can use the ObjectServer
SQL DESCRIBE command.

Running nco_postmsg in UTF-8 encoding

You can run the nco_postmsg utility in UTF-8 encoding by using the -utf8enabled
command-line option. You cannot, however, specify the name-value pairs directly
from the command line, and must instead add the name-value pairs to a text file.
In the text file, specify each name-value pair on a separate line, and enclose the
value in single quotation marks if it is a string value. The text file must be in
UTF-8 encoding, and can contain data for a single alert only. The
nco_postmsg.props properties file must also be in UTF-8 encoding.

The syntax for running nco_postmsg in UTF-8 encoding is:

$NCHOME/omnibus/bin/nco_postmsg [-option [value] ...] -utf8enabled TRUE
< file_name.txt

Where:
v -option is any of the nco_postmsg command-line options (other than

-utf8enabled), and value is the value to which you are setting the option.

Chapter 1. Configuring the ObjectServer 31

https://www-304.ibm.com/jct01003c/software/brandcatalog/portal/opal/details?catalog.label=1TW10NC10
https://www-304.ibm.com/jct01003c/software/brandcatalog/portal/opal/details?catalog.label=1TW10NC10

v file_name.txt is the file that contains the name-value pairs.

Error processing

When the nco_postmsg utility runs, it reads its properties file and validates any
command-line options that are specified. Then, it constructs the INSERT statement
by using the name-value pairs that were specified. Alerts are sent to the
ObjectServer, provided that the specified name-value pairs and command-line
options are valid. Errors are categorized as follows. All errors are written to a log
file.

Errors that cause the current alert to be written to a cache file.
If a communication error occurs because the ObjectServer is down or is
taking too long to respond, the nco_postmsg utility saves the alert in a
cache file named nco_postmsg.cache, and then exits. Any subsequent alerts
that are generated while there is a communication failure are also written
to the cache file. When the cache file reaches its maximum size, the file is
renamed with an _old suffix and a new nco_postmsg.cache file is created.
If a file named nco_postmsg.cache_old exists, it is deleted during the
renaming process, and its contents are lost.

Tip: The response time limit of the ObjectServer is set by the Ipc.Timeout
property of nco_postmsg, and the maximum size of the cache file is set by
the MaxCacheFileSize property.

The next time the nco_postmsg utility is run, and can successfully connect
to the ObjectServer, alerts are sent to the ObjectServer in the following
order:
1. Alerts in the nco_postmsg.cache_old file (if one exists). The alerts are

sent in order of age, with the oldest being sent first. When empty, the
file is deleted.

2. Alerts in the nco_postmsg.cache file. When empty, the file is truncated
to 0 bytes.

3. The current alert, which was generated when the nco_postmsg utility
was run.

Errors that cause the current alert to be discarded.
Alerts are discarded under the following conditions:
v Command-line errors: An invalid properties file path was specified or

invalid syntax was specified for the name-value pairs.
v Authentication errors: The authentication to the ObjectServer failed

because of invalid login credentials, an invalid ObjectServer name, or
SSL errors.

v Database errors: The database table write permission was not set, the
database table name was invalid, or there was a syntax error in the
constructed INSERT statement.

v File errors: An error occurred writing the entry to the cache file, or there
were syntax errors in the properties file.

Additional notes
v Users of nco_postmsg are subject to the ObjectServer authorization system, and

so require insert permission on the database table into which the data is being
written.

v If not set within the properties file, a password is required when the
nco_postmsg utility runs from the command line.

32 IBM Tivoli Netcool/OMNIbus: Administration Guide

v If the nco_postmsg utility is inserting data into the alerts.status table, it sets the
value of the FirstOccurrence and LastOccurrence columns to the current UNIX
time or POSIX time, unless these column values are explicitly specified on the
command line or in a script.

v If a value is specified for the Class column when the nco_postmsg is run, a
name-value pair is added to the INSERT statement. If no value is specified for
Class, the ObjectServer assigns the default class of 0 (zero) to the alert.

v Multiple instances of the nco_postmsg utility can be configured to cache alerts to
the same file by using the CacheFile property.

v If a communication error occurs while alerts are being sent from a cache file to
the alerts.status table, the alerts are retained in the cache file. The nco_postmsg
utility attempts to resend the alerts the next time the utility runs. Consequently,
alerts might be sent more than once, in which case, the Tally field is inaccurately
incremented.

Related concepts:
Chapter 4, “Using Netcool/OMNIbus Administrator to configure ObjectServers,”
on page 63
The ObjectServer stores, manages, and processes alert and status data that is
collected by external applications such as probes and gateways. You can use
Netcool/OMNIbus Administrator to configure your ObjectServer objects and to
configure process control.
Related reference:
“Displaying details of columns in a table or view (DESCRIBE command)” on page
203
Use the DESCRIBE command to display information about the columns of the
specified table or view.
Appendix A, “ObjectServer tables,” on page 357
The ObjectServer database contains the following tables: alerts tables, service
tables, system catalog tables, statistics tables, client tool support tables, desktop
tools tables, desktop ObjectServer tables, security tables, IDUC channel tables, and
service-affected events tables.

nco_postmsg properties and command-line options
The nco_postmsg utility contains a set of properties and command-line options for
sending alerts to the ObjectServer. You can run this command from the
$NCHOME/omnibus/bin directory.

The nco_postmsg properties file is $NCHOME/omnibus/etc/nco_postmsg.props. In an
unedited properties file, all properties are set to the default values, and are
commented out with a number sign (#) at the beginning of the line. To override a
default value, change its setting in the properties file and remove the number sign
(#). If you change a setting on the command line, both the default value and the
setting in the properties file are overridden.

The properties and command-line options for nco_postmsg are described in the
following table.

Chapter 1. Configuring the ObjectServer 33

Table 9. nco_postmsg properties and command-line options

Property Command-line option Description

CacheFile string -cachefile string Specifies the full path and name of the cache file where
alerts are stored when they cannot be sent to the
ObjectServer due to a communication failure. The default
is $NCHOME/omnibus/var/nco_postmsg.cache.

When the cache file reaches its maximum size, as
specified by the MaxCacheFileSize property, the
nco_postmsg.cache file is renamed
nco_postmsg.cache_old, and a new nco_postmsg.cache file
is created.

CacheFileWarnThreshold
integer

N/A Causes a warning message to be written to the log file
when the nco_postmsg.cache file size exceeds a specified
percentage value. Note that this setting has no effect on
the nco_postmsg.cache_old file. The default is 90%.

The range is 10% - 99%.

ConfigCryptoAlg string N/A Specifies the cryptographic algorithm to use for
decrypting string values (including passwords) that were
encrypted with the nco_aes_crypt utility and then stored
in the properties file. Set the string value as follows:

v When in FIPS 140–2 mode, use AES_FIPS.

v When in non-FIPS 140–2 mode, you can use either
AES_FIPS or AES. Use AES only if you need to maintain
compatibility with passwords that were encrypted by
using the tools provided in versions earlier than Tivoli
Netcool/OMNIbus V7.2.1.

The value that you specify must be identical to that used
when you ran nco_aes_crypt with the -c setting, to
encrypt the string values.

Use this property in conjunction with the ConfigKeyFile
property.

The default is AES.

ConfigKeyFile string N/A Specifies the path and name of the key file that contains
the key used to decrypt encrypted string values
(including passwords) in the properties file.

The key is used at run time to decrypt string values that
were encrypted with the nco_aes_crypt utility. The key
file that you specify must be identical to the file used to
encrypt the string values when you ran nco_aes_crypt
with the -k setting.

Use this property in conjunction with the ConfigCryptoAlg
property.

N/A -help Displays help on the command-line options and exits.

Ipc.Timeout integer -ipctimeout integer Sets the time, in seconds, that the nco_postmsg utility
waits for a response from the ObjectServer, when
attempting to send alerts. The default is 60 seconds.

If this time is exceeded (or the ObjectServer is down), a
communication error occurs and the alert is instead sent
to the cache file.

34 IBM Tivoli Netcool/OMNIbus: Administration Guide

Table 9. nco_postmsg properties and command-line options (continued)

Property Command-line option Description

MaxCacheFileSize integer -maxcachefilesize
integer

Sets the maximum size of the cache file, in KB. The
default is 10240 KB.

If set to 0 (zero), no cache files are created or used.

MessageLevel string -messagelevel string Specifies the message logging level. Possible values are:
debug, info, warn, error, and fatal. The default level is
warn.

Messages that are logged at each level are as follows:

v fatal: fatal only

v error: fatal and error

v warn: fatal, error, and warn

v info: fatal, error, warn, and info

v debug: fatal, error, warn, info, and debug

Tip: The value of string can be in uppercase, lowercase, or
mixed case.

MessageLog string -messagelog string Specifies where messages are logged. Messages can be
logged to a log file or to stderr.

The default is $NCHOME/omnibus/log/nco_postmsg.log.

Name string -name string Specifies a client name for the nco_postmsg utility. This
name is used as the application description when
nco_postmsg connects to the ObjectServer. The default is
nco_postmsg.

The value of the Name property also determines the name
of the properties file, which takes the following format:
$NCHOME/omnibus/etc/name.props.
Tip: You can use the Name property to distinguish
between multiple nco_postmsg clients that are sending
alerts to the ObjectServer, and to maintain individual
properties files per client.

Password string -password string Specifies the password for the user connecting to the
ObjectServer. The default is ’’.

Props.CheckNames TRUE |
FALSE

N/A Causes the nco_postmsg utility to terminate if any
specified property is invalid. The default is TRUE.

PropsFile string -propsfile string Specifies the full path and name of the properties file for
the nco_postmsg utility. The default name is
$NCHOME/omnibus/etc/nco_postmsg.props.

Server string -server string Sets the name of the ObjectServer to which the
nco_postmsg utility connects and sends an alert. The
default is NCOMS.

SSLServerCommonName string N/A Specifies a comma-separated list of common names to use
if the nco_postmsg utility is connecting to the ObjectServer
by using SSL. For example, string1,string2,string3The
default is ’’.

Table string -table string Sets the name of the database table into which the
INSERT statement adds the alert data. The default is
alerts.status.

Chapter 1. Configuring the ObjectServer 35

Table 9. nco_postmsg properties and command-line options (continued)

Property Command-line option Description

UserName string -username string

or

-user string

Specifies the user name that is used to authenticate when
connecting to the ObjectServer. The default is the user
name used to log on to the computer.

N/A Windows

-utf8enabled TRUE |
FALSE

Controls the encoding of data that is passed into, or
generated by, this application on Windows.

Set the value of -utf8enabled to TRUE to run the
application in the UTF-8 encoding. The default is FALSE,
which causes the default system code page to be used.
Important: Although a UTF8Enabled property is available,
an attempt to enable UTF-8 encoding by setting this
property to TRUE has no effect. To run in a UTF-8
encoding on Windows, you must always use the
-utf8enabled command-line option.

N/A -version Displays version information for the utility and exits.

nco_postmsg examples and resulting INSERT statements
The nco_postmsg utility accepts input from command-line options, scripts, or a text
file, and generates an ObjectServer SQL INSERT statement that is sent to an
ObjectServer. The following examples show sample nco_postmsg commands and
their resulting INSERT statements.

Example 1

This example writes an alert to the default NCOMS ObjectServer and default
alerts.status table. The user name and password for authenticating to NCOMS
have not been set in the nco_postmsg properties file, and are instead specified from
the command line.

The nco_postmsg command entered is:
nco_postmsg -user root -password "" "Identifier=’example 1’" "Severity=3"
"Manager=’nco_postmsg’" "Summary=’An event occurred’"

The resulting INSERT statement that is sent to the alerts.status table in NCOMS is:
insert into alerts.status (Identifier,Severity,Manager,Summary,FirstOccurrence,LastOccurrence)
values (’example 1’,3,’nco_postmsg’,’an event occurred’,1255341764,1255341764);

Because name-value pairs were not explicitly specified for FirstOccurrence and
LastOccurrence in the nco_postmsg command, FirstOccurrence and LastOccurrence
are automatically set to the current UNIX time in the INSERT statement that is sent
to the alerts.status table.

Example 2

This example writes an alert to the alerts.status table of an ObjectServer named
PRESLEY. The nco_postmsg utility authenticates to the ObjectServer by using the
user name myname and an encrypted password, which are specified in the
nco_postmsg properties file.

In this case, it is assumed that you have used property value encryption to encrypt
the password in the properties file so that the password cannot be read without a

36 IBM Tivoli Netcool/OMNIbus: Administration Guide

key. The properties file settings for the login credentials, including password
encryption, are uncommented and completed as follows:
ConfigCryptoAlg: ’AES_FIPS’
ConfigKeyFile: ’/dir/subdir/secret.txt’

...

Password: ’@44:Kris2m3QLsy+dZYNt3/jptl8cd7c6Fmboaj+E6XrNw8=@’
UserName: ’myname’

The nco_postmsg command entered is:
nco_postmsg –server PRESLEY "Identifier=’example 2’" "Node=’London’"

The resulting INSERT statement that is sent to the alerts.status table in PRESLEY is
as follows:
insert into alerts.status (Identifier,Node,FirstOccurrence,LastOccurrence)
values (’example 2’,’London’,1255341764,1255341764);

Example 3

This example inserts an alert into the mydb.mytable table in the default NCOMS
ObjectServer. In this case, it is assumed that a user name and password are
specified in the nco_postmsg properties file.

The nco_postmsg command entered is:
nco_postmsg –table mydb.mytable "Identifier=’example 3’" "Occurrence=1234567890"
"Summary=’write into my table’"

The resulting INSERT statement that is sent to the mydb.mytable table in NCOMS
is as follows:
insert into mydb.mytable (Identifier,Occurrence,Summary)
values (’example 3’,1234567890,’write into my table’);

Example 4

This example shows how to run the nco_postmsg utility in UTF-8 encoding.

The nco_postmsg utility authenticates to the ObjectServer by using the user name
myname and a password, which are specified in the nco_postmsg.props properties
file as follows:
Password: ’secret’
UserName: ’myname’

This properties file must be saved in UTF-8 encoding.

A text file, my_data.txt, is created with the following name-value pairs for the alert
to be sent to the ObjectServer:
Identifier=’example 2’
Node=’London’

This text file must be saved in UTF-8 encoding.

To run nco_postmsg in UTF-8 encoding, and write an alert to the alerts.status table
of an ObjectServer named PRESLEY (also presumably running in UTF-8 encoding),
the command entered is:
nco_postmsg –server PRESLEY -utf8enabled TRUE < /file_path/my_data.txt

Chapter 1. Configuring the ObjectServer 37

The resulting INSERT statement that is sent to the alerts.status table in PRESLEY is
as follows:
insert into alerts.status (Identifier,Node,FirstOccurrence,LastOccurrence)
values (’example 2’,’London’,1255341764,1255341764);

38 IBM Tivoli Netcool/OMNIbus: Administration Guide

Chapter 2. Configuring a proxy server

The ObjectServer receives alert information from probes. In a standard
configuration, alerts are forwarded directly to the ObjectServer. You can configure a
proxy server to reduce the number of probe connections to an ObjectServer.

Where a large number of probes are forwarding alert information directly to the
ObjectServer, and a large number of desktop connections are also made to the
same ObjectServer, there can be a negative impact on performance.

A proxy server provides a buffer to reduce the number of direct connections to the
primary ObjectServer. Multiple probe connections made to the proxy server are
multiplexed and forwarded through a single connection to the ObjectServer.

The following figure shows how probes communicate with the proxy server.

Starting the proxy server
You can start the proxy server automatically by using process control on UNIX and
Windows, and also by using services on Windows. You can also start the proxy
server manually from the command line. In general, use process control to start the
proxy server.

About this task

Starting a proxy server by using process control
On UNIX and Windows, you can start a proxy server as a process by using process
control. The proxy server must be defined as a process or part of a service.

ObjectServer
NCOMS

Probes

Proxy Server
NCO_PROXY

Multiple event streams

Single event stream

Figure 1. Example proxy server architecture

© Copyright IBM Corp. 1994, 2013 39

About this task
Related concepts:
Chapter 7, “Using process control to manage processes and external procedures,”
on page 275
The Tivoli Netcool/OMNIbus process control system performs two primary tasks.
It manages local and remote processes, and runs external procedures that are
specified in automations.

Starting a proxy server by using services (Windows)
On Windows, you can optionally install and run the proxy server as a Windows
service. When the service is set to automatic, the proxy server starts when the
computer starts.

About this task

You must manually install and configure the proxy server to run as a service on a
Windows host.

Starting the proxy server manually
Use the nco_proxyserv command to start the proxy server manually.

About this task

From the command line, enter the appropriate command for your operating
system:

Table 10. Starting the proxy server from the command line

Operating system Command

UNIX $NCHOME/omnibus/bin/nco_proxyserv [-name proxyname] [-server servername]

Windows %NCHOME%\omnibus\bin\nco_proxyserv [-name proxyname] [-server servername]

In both commands, proxyname is the name of the proxy server and servername is the
name of the ObjectServer. If you do not specify the -name command-line option,
the default proxy server name is NCO_PROXY. If you do not specify the -server
command-line option, the proxy server buffers connections for the NCOMS
ObjectServer.

You can start the proxy server with additional command-line options.

Proxy server properties and command-line options
The proxy server reads its properties file when it starts. If a property is not
specified in this file, the default value is used unless a command-line option is
used to override it. The default location of the properties file is
$NCHOME/omnibus/etc/proxyserver.props.

In the properties file, a property and its corresponding value are separated by a
colon (:). String values are surrounded by quotation marks; for example:
ServerName: "NCO_PROXY"

Tip: You can encrypt string values in a properties file by using property value
encryption.

40 IBM Tivoli Netcool/OMNIbus: Administration Guide

Command-line options for the proxy server use the following format:
nco_proxyserv [-option [value] ...]

In this command, -option is the command-line option and value is the value that
you are setting the option to. Not every option requires you to specify a value.

If you do not specify a properties file when you start a proxy server, the default
file is used. Use the -propsfile command-line option to specify the full path and
file name of an alternative properties file.

The following table lists the proxy server properties and command-line options.

Table 11. Proxy server properties and command-line options

Property Command-line option Description

AuthPassword string N/A The password that is associated with the user
name used to authenticate the proxy server
when it connects to an ObjectServer running in
secure mode. The default is ’’.

When in FIPS 140–2 mode, the password can
either be specified in plain text, or can be
encrypted with the nco_aes_crypt utility. If you
are encrypting passwords by using
nco_aes_crypt in FIPS 140–2 mode, you must
specify AES_FIPS as the encryption algorithm.

When in non-FIPS 140–2 mode, the password
can be encrypted with the nco_g_crypt or
nco_aes_crypt utilities. If you are encrypting
passwords by using nco_aes_crypt in non-FIPS
140–2 mode, you can specify either AES_FIPS or
AES as the encryption algorithm. Use AES only if
you need to maintain compatibility with
passwords that were encrypted using the tools
provided in versions earlier than Tivoli
Netcool/OMNIbus V7.2.1.

AuthUserName string N/A The user name that is used to authenticate the
proxy server when it connects to an
ObjectServer running in secure mode. The
default is root.

Chapter 2. Configuring a proxy server 41

Table 11. Proxy server properties and command-line options (continued)

Property Command-line option Description

ConfigCryptoAlg string N/A Specifies the cryptographic algorithm to use for
decrypting string values (including passwords)
that were encrypted with the nco_aes_crypt
utility and then stored in the properties file. Set
the string value as follows:

v When in FIPS 140–2 mode, use AES_FIPS.

v When in non-FIPS 140–2 mode, you can use
either AES_FIPS or AES. Use AES only if you
need to maintain compatibility with
passwords that were encrypted by using the
tools provided in versions earlier than Tivoli
Netcool/OMNIbus V7.2.1.

The value that you specify must be identical to
that used when you ran nco_aes_crypt with the
-c setting, to encrypt the string values.

Use this property in conjunction with the
ConfigKeyFile property.

ConfigKeyFile string N/A Specifies the path and name of the key file that
contains the key used to decrypt encrypted
string values (including passwords) in the
properties file.

The key is used at run time to decrypt string
values that were encrypted with the
nco_aes_crypt utility. The key file that you
specify must be identical to the file used to
encrypt the string values when you ran
nco_aes_crypt with the -k setting.

Use this property in conjunction with the
ConfigCryptoAlg property.

ConnectionRatio integer -ratio integer Sets the ratio of incoming connections from
probes to outgoing connections to an
ObjectServer. The default value of 10 creates a
10:1 ratio of incoming to outgoing connections.

N/A -help Displays the supported command-line options
and exits.

N/A -logfile string Sets the name of the file to which the proxy
server writes messages, including errors. By
default, the file is $NCHOME/omnibus/log/
servername.log , where the servername is
defined by the -name option.

Connections integer -connections integer Sets the maximum number of available
connections for probes. The default value is 256
and the maximum is 1024.
Note: The Connections property and
-connections command-line option are aliases
for the MaxConnections property and -max
command-line option.

42 IBM Tivoli Netcool/OMNIbus: Administration Guide

Table 11. Proxy server properties and command-line options (continued)

Property Command-line option Description

NetworkTimeout integer -networktimeout integer Specifies a time in seconds after which a login
attempt or connection to the ObjectServer times
out, if a network failure occurs. After the
specified timeout period, the proxy server
attempts to reconnect to the ObjectServer. If the
connection is unsuccessful after a second
timeout period, the proxy server attempts to
connect to a backup ObjectServer, where
available. The default is 20 seconds.

OldTimeStamp TRUE | FALSE -oldtimestamp TRUE | FALSE Specifies the timestamp format to use in the log
file.

Set the value to TRUE to display the timestamp
format that is used in Tivoli Netcool/OMNIbus
V7.2.1, or earlier. For example: dd/MM/YYYY
hh:mm:ss AM or dd/MM/YYYY hh:mm:ss PM
when the locale is set to en_GB on a Solaris 9
computer.

Set the value to FALSE to display the ISO 8601
format in the log file. For example:
YYYY-MM-DDThh:mm:ss, where T separates the
date and time, and hh is in 24-hour clock. The
default is FALSE.

N/A -propsfile string Sets the proxy server properties file name. The
default name is $NCHOME/omnibus/etc/
servername.props, where the servername is
defined by the -name option.

RemoteServer string -server string Sets the name of the ObjectServer to which the
proxy server connects. The default is NCOMS.

SecureMode TRUE | FALSE -secure Sets the security mode of the proxy server. If
enabled, the proxy server authenticates probe
connection requests with a user name and
password. If disabled (the default), probes can
connect to the proxy server without a user name
and password.

ServerName string -name string Sets the proxy server name. This name is the
name that is configured in the Server Editor.
The default is NCO_PROXY.

N/A -version Displays version information about the proxy
server and exits.

Related reference:
“Running the proxy server in secure mode” on page 44
You can run the proxy server in secure mode. When you specify the SecureMode
property or the -secure command-line option, the proxy server authenticates probe
connections by requiring a user name and password.
“Running the ObjectServer in secure mode” on page 19
You can run the ObjectServer in secure mode. When you specify the -secure
command-line option, the ObjectServer authenticates probe, gateway, and proxy
server connections by requiring a user name and password.

Chapter 2. Configuring a proxy server 43

Connecting to the proxy server
To connect probes to the proxy server, specify the proxy server name in the Server
property in the probe properties file or use the -server command-line option.

All alerts are then sent to the proxy server.

Running the proxy server in secure mode
You can run the proxy server in secure mode. When you specify the SecureMode
property or the -secure command-line option, the proxy server authenticates probe
connections by requiring a user name and password.

When a connection request is sent, the proxy server issues an authentication
message. The probe must respond with the correct user name and password.

If you do not specify the -secure option, probe connection requests are not
authenticated.

When connecting to a secure proxy server, each probe must have an AuthUserName
property and AuthPassword property specified in its properties file. If the user
name and password combination is incorrect, the proxy server issues an error
message.

You can choose any valid user name for the AuthUserName property.

Password encryption details for running in FIPS 140–2 mode and non-FIPS 140–2
mode are described in the following table.

Table 12. Password encryption in FIPS 140–2 mode and non-FIPS 140–2 mode

Mode Action

FIPS 140–2 mode When in FIPS 140–2 mode, passwords can either be specified in plain
text or in encrypted format. You can encrypt passwords by using
property value encryption, as follows:

1. If you do not yet have a key for encrypting the password, create
one by running the nco_keygen utility, which is located in
$NCHOME/omnibus/bin.

2. Run the nco_aes_crypt utility to encrypt the password with the key
that was generated by the nco_keygen utility. The nco_aes_crypt
utility is also located in $NCHOME/omnibus/bin. Note that you must
specify AES_FIPS as the algorithm to use for encrypting the
password.

3. Open the properties file to which you want to add the encrypted
password and specify this encrypted output for the AuthPassword
setting.
Note: You must also set the ConfigKeyFile property to the key file
that you specified when running nco_aes_crypt, and set the
ConfigCryptoAlg property to the encryption algorithm used.

44 IBM Tivoli Netcool/OMNIbus: Administration Guide

Table 12. Password encryption in FIPS 140–2 mode and non-FIPS 140–2 mode (continued)

Mode Action

Non-FIPS 140–2
mode

When in non-FIPS 140–2 mode, passwords can either be specified in
plain text or in encrypted format. However, the client always transmits
encrypted login information irrespective of the password encryption
that is used in the properties file. You can encrypt passwords by using
the nco_g_crypt utility or by using property value encryption, as
follows:

v To encrypt a password by using the nco_g_crypt utility, run the
command as follows:

$NCHOME/omnibus/bin/nco_g_crypt plaintext_password

In this command, plaintext_password represents the unencrypted form
of the password. The nco_g_crypt utility takes the unencrypted
password and displays an encrypted version. Open the properties file
to which you want to add the encrypted password and specify this
encrypted output for the AuthPassword setting.

v To encrypt a password by using property value encryption, you
require a key that is generated with the nco_keygen utility. You can
then run nco_aes_crypt to encrypt the password with the key. Note
that you can specify either AES_FIPS or AES as the algorithm for
encrypting the password. Use AES only if you need to maintain
compatibility with passwords that were encrypted using the tools
provided in versions earlier than Tivoli Netcool/OMNIbus V7.2.1.

Open the file to which you want to add the encrypted password and
specify this encrypted output for the AuthPassword setting.
Note: You must also set the ConfigKeyFile property to the key file
that you specified when running nco_aes_crypt, and set the
ConfigCryptoAlg property to the encryption algorithm used.

If the ObjectServer is running in secure mode, the proxy server must also have the
AuthUserName and AuthPassword properties in its property file to connect the
ObjectServer. If the user name and password combination is incorrect, the
ObjectServer issues an error message. The AuthPassword value can be in plain text
or encrypted, as described in the preceding table.

Attention: Passwords encrypted with nco_g_crypt can be used in the same way
as unencrypted passwords to access the ObjectServer. Therefore, you must set
appropriate permissions on any files containing encrypted passwords to prevent
unauthorized access. Alternatively, passwords that have been encrypted with
nco_g_crypt must be further encrypted with nco_aes_crypt, and permissions on
the key file must be set appropriately.

For further information about the probe properties, see the IBM Tivoli
Netcool/OMNIbus Probe and Gateway Guide.

Chapter 2. Configuring a proxy server 45

46 IBM Tivoli Netcool/OMNIbus: Administration Guide

Chapter 3. Configuring a firewall bridge server

In a secure environment in which the ObjectServer and probes are separated by a
firewall, configure a firewall bridge server so that the probes can connect to the
ObjectServer from outside the secure network.

In a standard secure configuration, alerts are forwarded from probes directly to the
ObjectServer. If probes are located outside the firewall, the firewall rejects the
connections to the ObjectServer. By configuring a firewall bridge server, you can
overcome this security restriction.

The firewall bridge consists of two servers: a Server Access Bridge and a Client
Access Bridge, which run either side of the firewall. A communication channel
between the two servers is initiated by the Server Access Bridge.

The firewall bridge uses this communication channel to create new data channels
between the Server Access Bridge and the Client Access Bridge. Client connections
and data can be sent to the ObjectServer from outside the firewall. Probes still
initiate a connection but it is now made to the local Client Access Bridge, situated
on the same side of the firewall. This enables the Client Access Bridge, situated
outside the firewall, to provide data flow to the ObjectServer, situated inside the
firewall.

The following figure shows the data-flow across a firewall between the
ObjectServer and two probes located outside the firewall.

© Copyright IBM Corp. 1994, 2013 47

A standard firewall bridge server configuration
A firewall bridge can be configured so that a probe can connect to an ObjectServer
from outside the secure network.

The following figure shows the configuration setup for a standard firewall bridge:

ObjectServer

Probe A
Data-flow

Inter-bridge
Command

Connection

Inter-bridge
Command

Connection

P
ro

b
e

A
D

a
ta

-f
lo

w

P
ro

b
e

B
D

a
ta

-f
lo

w

Probe A

P
ro

b
e

A
D

a
ta

-f
lo

w

Probe B

P
ro

b
e

B
D

a
ta

-f
lo

w

Bridge Server

Server Access

Bridge Server

Client Access

Firewall

Probe A
Data-flow

Probe B
Data-flow

Probe B
Data-flow

Interfaces
File

Figure 2. Example firewall bridge server architecture

48 IBM Tivoli Netcool/OMNIbus: Administration Guide

The configuration flow is as follows:

�1� The Client Access Bridge

The Client Access Bridge listens for connections from the Server Access
Bridge on the port and host name set in the associated
Bridge.ClientAP.ServerPort and Bridge.ClientAP.Hostname properties of
the Client Access Bridge property file. The Client Access Bridge also listens
for connections from probes on the port specified by
BridgeClientAP.ClientPort property.

�2� The Server Access Bridge

The Server Access Bridge makes a connection to Client Access Bridge
(across the Firewall) on the port and host name set in the
Bridge.ClientAP.ServerPort and Bridge.ClientAP.Hostname properties of
the Server Access Bridge property file.

�3� The probe

The probe makes a connection to the client access port of the Client Access
Bridge by connecting to the port and host name associated with the server
name defined in the omni.dat interfaces file.

�1� The Client Access Bridge

The Client Access Bridge then requests new data flow from the Server
Access Bridge.

�2� The Server Access Bridge

Firewall

Bridge Server

Client Access

ObjectServer
(NCOMS)

Probe
(NCOMS)

Bridge Server

Server Access

host: internal host: external

12

34

Primary:
internal
4100 (port)

Primary:
external
10001 (port)

[NCO_BRIDGE]
Primary:
internal
4500 (port)

port 10002
Bridge.ClientAP.ServerPort
on
Bridge.ClientAP.Hostname

port 10001
Bridge.ClientAP.ClientPort

[NCO_BRIDGE]
Primary:
external
4500 (port)

Interface

Figure 3. A standard firewall bridge server configuration

Chapter 3. Configuring a firewall bridge server 49

The Server Access Bridge makes a new connection to the ObjectServer
(NCOMS) by using the port and host name associated with NCOMS in the
omni.dat interfaces file.

The Server Access Bridge then makes a new data flow connection to the
Client Access Bridge.

�4� The ObjectServer

Data packets sent from the probe (3) are received by the Client Access
Bridge (1) and are routed along the associated data flow connection to the
Server Access Bridge (2). The Server Access Bridge forwards the data along
the associated network connection to the ObjectServer (4), and data is
returned along the same connection.

A multiple firewall bridge server configuration
Multiple firewall bridge servers can be configured so that probes can connect to an
ObjectServer from across multiple firewalls.

The following figure shows the configuration setup for multiple firewall bridge
servers:

The configuration flow is as follows:

�1�

The probe makes an initial connection to the Client Access Bridge server
(CLIENT_ACCESS_A) on the external host. It uses the port (10001) and
host name (external) associated with the NCOMS server name defined in
the omni.dat interfaces file.

�2�

The Client Access Bridge server (CLIENT_ACCESS_A) then requests a new
data-flow connection (across Firewall 2) from its associated Server Access
Bridge server (SERVER_ACCESS_B) using the existing inter-bridge
communication channel.

ObjectServer
(NCOMS)

host:dmz host: external

Primary:
internal
4100 (port)

host: internal

SERVER BRIDGE

Server_Access_A

port 4500

CLIENT BRIDGE

Client_Access_A

port 4500

Primary:
external
10001 (port)

Probe
(NCOMS)

F
ir

e
w

a
ll

1

F
ir

e
w

a
ll

2

CLIENT BRIDGE

Client_Access_B

port 10002

SERVER BRIDGE

Server_Access_B

port 4502port 4501

Primary:
dmz
10001 (port)

port 10002

1

23

4

5

6

7 8

9

Figure 4. A multiple firewall bridge server configuration

50 IBM Tivoli Netcool/OMNIbus: Administration Guide

�3�

The Server Access Bridge server (SERVER_ACCESS_B) makes a new
connection to the Client Access Bridge server (CLIENT_ACCESS_B). It uses
the port (10001) and host name (dmz) associated with the NCOMS server
name defined in the omni.dat interfaces file.

�4�

The Client Access Bridge server (CLIENT_ACCESS_B) then requests a new
data-flow connection (across Firewall 1) from its associated Server Access
Bridge server (SERVER_ACCESS_A) using the existing inter-bridge
communciation channel.

�5�

The Server Access Bridge server (SERVER_ACCESS_A) makes a new
connection to the ObjectServer (NCOMS) on the internal host. It uses the
port and host name associated with NCOMS in the omni.dat interfaces file.

The new connection is acknowledged by the ObjectServer (NCOMS).

�6� and �7�

The Server Access Bridge server (SERVER_ACCESS_A) initiates a new
data-flow connection (across Firewall 1) to the Client Access Bridge server
(CLIENT_ACCESS_B) and in turn a new connection is made to the Server
Access Bridge server (SERVER_ACCESS_B).

�8� and �9�

The Server Access Bridge server (SERVER_ACCESS_B) creates a new
data-flow connection (across Firewall 2) to the Client Access Bridge server
(CLIENT_ACCESS_A). This connection is acknowledged by the Client
Access Bridge and in turn the incoming probe connection is accepted.

Data packets are now routed from the probe along the open connections
and data-flow channels initiated by the bridge servers, and finally to the
ObjectServer (NCOMS).

Firewall bridge server failover configuration
A basic firewall bridge server failover architecture comprises all the components
from the basic architecture together with an additional Server Access Bridge server
and Client Access Bridge server. If an initial connection to the ObjectServer fails,
the probe attempts to connect to the ObjectServer using a backup Server Access
Bridge server and Client Access Bridge server.

The following figure illustrates a basic firewall bridge server failover configuration:

Chapter 3. Configuring a firewall bridge server 51

In the basic firewall bridge server failover configuration, host_a and host_b are
deployed inside the firewall, and a further host is deployed outside the firewall.

The Server Access Bridge server (Server_Access_P) runs on host_a (internal) and
port 4500, and is configured to connect to the ObjectServer (NCOMS_P) using the
host name (Primary) and port (4100) defined in the omni.dat interfaces file. The
Server Access Bridge server connects to a corresponding Client Access Bridge
server (Client_Access_P) which runs on the external host with server port external:
10002 and client port: 10001 defined.

The Server Access Bridge server (Server_Access_B) runs on host_b (internal) and
port 4500, and is configured to connect to the ObjectServer (NCOMS_B) using the
host name (Primary) and port (4100) defined in the omni.dat interfaces file. The
Server Access Bridge server connects to a corresponding Client Access Bridge
server (Client_Access_B) which runs on the external host with server port external:
10102 and client port: 10101 defined.

The probe makes an initial connection to port 10001 on the Client Access Bridge
server (Client_Access_P) and then routes the data across the firewall to the
ObjectServer (NCOMS_P) using the Server Access Bridge server (Server_Access_P).

Firewall

Bridge Server

Client_Access_P

ObjectServer
(NCOMS_P)

Probe
(NCOMS)

Bridge Server

Server_Access_P

host_b: internal

host: external

Primary:
internal
4100 (port)

Bridge Server

Server_ Access_B

Bridge Server

Client_Access_B

host_a: internal

ObjectServer
(NCOMS_B)

NCOMS_V

Primary:
internal
4100 (port)

port 10001

port 10101

port 4500

port 4500

Primary:
External
10002 (port)

Backup:
External
10102 (port)

Figure 5. Basic failover configuration

52 IBM Tivoli Netcool/OMNIbus: Administration Guide

If that connection is not available, the probe uses port 10101 on the Client Access
Bridge server (Client_Access_B) to route the data across the firewall to the
ObjectServer (NCOMS_B) using the Server Access Bridge server (Server_Access_B).

Starting the firewall bridge server
You can start the firewall bridge server automatically by using process control on
UNIX and Windows, and also by using services on Windows. You can also start
the firewall bridge server manually from the command-line interface.

Starting a firewall bridge server by using process control
On UNIX and Windows, you can start a firewall bridge server as a process by
using process control. The firewall bridge server must be defined as a process or
part of a service.

About this task
Related concepts:
Chapter 7, “Using process control to manage processes and external procedures,”
on page 275
The Tivoli Netcool/OMNIbus process control system performs two primary tasks.
It manages local and remote processes, and runs external procedures that are
specified in automations.

Starting a firewall bridge server by using Windows services
On Windows, you can optionally install and run the firewall bridge server as a
Windows service. When the service is set to automatic, the bridge server starts
when the computer starts.

About this task

You must manually install and configure the firewall bridge server to run as a
service on a Windows host.

For further information about installing and configuring a process agent as a
Windows service, see the IBM Tivoli Netcool/OMNIbus Installation and Deployment
Guide.

Starting the firewall bridge server manually
Use the nco_bridgeserv command to start the firewall bridge server manually.

About this task

From the command line, enter the appropriate command for your operating
system:

Table 13. Starting the firewall bridge server from the command-line interface

Operating system Command

UNIX $NCHOME/omnibus/bin/nco_bridgeserv [-name bridgename]

Windows %NCHOME%\omnibus\bin\nco_bridgeserv [-name bridgename]

Chapter 3. Configuring a firewall bridge server 53

In both commands, bridgename is the name of the firewall bridge server. If you do
not specify the -name command-line option, the default firewall bridge server name
is NCO_BRIDGE.

You can start the firewall bridge server with additional command-line options.

Firewall bridge server properties and command-line options
The firewall bridge server reads its properties file when it starts. If a property is
not specified in this file, the default value is used unless a command-line option is
used to override it. The default location of the properties file is
$NCHOME/omnibus/etc/bridgeserver.props.

In the properties file, a property and its corresponding value are separated by a
colon (:). String values are surrounded by quotation marks; for example:
ServerName: "NCO_BRIDGE"

Tip: You can encrypt string values in a properties file by using property value
encryption.

Command-line options for the firewall bridge server use the following format:

nco_bridgeserv [-option [value] ...]

In this command, -option is the command-line option and value is the value that
you are setting the option to. Not every option requires you to specify a value.

If you do not specify a properties file when starting a firewall bridge server, the
default file is used. Use the -propsfile command-line option to specify the full
path and file name of an alternative properties file.

The following table lists the firewall bridge server properties and command-line
options.

Table 14. Bridge server properties and command-line options

Property Command-line option Description

AuthPassword string -authpasswd string The password that is associated with the user
name used to authenticate the proxy server
when it connects to an ObjectServer running in
secure mode. The default is ’’.

When in FIPS 140–2 mode, the password can
either be specified in plain text, or can be
encrypted with the nco_aes_crypt utility. If you
are encrypting passwords by using
nco_aes_crypt in FIPS 140–2 mode, you must
specify AES_FIPS as the encryption algorithm.

When in non-FIPS 140–2 mode, the password
can be encrypted with the nco_g_crypt or
nco_aes_crypt utilities. If you are encrypting
passwords by using nco_aes_crypt in non-FIPS
140–2 mode, you can specify either AES_FIPS or
AES as the encryption algorithm. Use AES only if
you need to maintain compatibility with
passwords that were encrypted using the tools
provided in versions earlier than Tivoli
Netcool/OMNIbus V7.2.1.

54 IBM Tivoli Netcool/OMNIbus: Administration Guide

Table 14. Bridge server properties and command-line options (continued)

Property Command-line option Description

AuthUserName string -authusername string The user name that is used to authenticate the
proxy server when it connects to an
ObjectServer running in secure mode. The
default is ’’.

Bridge.AllowConnections TRUE
| FALSE

-disallowconnections When TRUE, a user can connect to the firewall
bridge server's command port. The default is
TRUE.

Bridge.ClientAP.ClientPort
unsigned

-cpclientport Specifies the client listening port for inbound
Netcool clients (CLIENT_AP only). The default
is 10001.

Bridge.ClientAP.Hostname
string

-cpclienthname string Specifies the host name of the client access point
bridge server (SERVER_AP only). The default is
localhost.

Bridge.ClientAP.ServerPort
unsigned

-cpserverport Specifies the server listening port for inbound
bridge clients. The default is 10002.

Bridge.PAMEnable TRUE | FALSE -pamdisable When TRUE, a PAM module is used to
authenticate client logins. The default is TRUE.

Bridge.PAMServiceName string -pamsrvname string Specifies the PAM service name used for PAM
authentication. The default is nco_bridgeserv.

Bridge.RetryInterval unsigned -retryinterval string Specifies the retry interval (in seconds) for
bridge to bridge communications (SERVER_AP
only).

The default is 30.

Bridge.Role string -bridgerole string Specifies the role performed by the firewall
bridge server:

CLIENT_AP: The firewall bridge server runs as a
client bridge.

SERVER_AP: The firewall bridge server runs as a
server bridge.

The default is SERVER_AP.

Bridge.ServerAP.Server string -spserver string Specifies the name of the ObjectServer to which
the firewall bridge server should forward
connections (SERVER_AP only). The default is
NCOMS.

Bridge.ThreadPool.MaxJobs
unsigned

-tpmaxjobs Specifies the maximum number of data flows
handled by a thread pool worker. The default is
10.

Bridge.TrustedHostFile boolean -trustedhostfile Specifies the path to the trusted hosts security
file used by the firewall bridge server. The
default is $OMNIHOME/etc/NCO_BRIDGE.thosts.

Note: This only applies to the CLIENT_AP
bridge server. The SERVER_AP bridge server
does not accept any incoming connections.

Chapter 3. Configuring a firewall bridge server 55

Table 14. Bridge server properties and command-line options (continued)

Property Command-line option Description

ConfigCryptoAlg string N/A Specifies the cryptographic algorithm to use for
decrypting string values (including passwords)
that were encrypted with the nco_aes_crypt
utility and then stored in the properties file. Set
the string value as follows:

v When in FIPS 140–2 mode, use AES_FIPS.

v When in non-FIPS 140–2 mode, you can use
either AES_FIPS or AES. Use AES only if you
need to maintain compatibility with
passwords that were encrypted by using the
tools provided in versions earlier than Tivoli
Netcool/OMNIbus V7.2.1.

The value that you specify must be identical to
that used when you ran nco_aes_crypt with the
-c setting, to encrypt the string values.

Use this property in conjunction with the
ConfigKeyFile property.

ConfigKeyFile string N/A Specifies the path and name of the key file that
contains the key used to decrypt encrypted
string values (including passwords) in the
properties file.

The key is used at run time to decrypt string
values that were encrypted with the
nco_aes_crypt utility. The key file that you
specify must be identical to the file used to
encrypt the string values when you ran
nco_aes_crypt with the -k setting.

Use this property in conjunction with the
ConfigCryptoAlg property.

Connections integer -connections integer Sets the maximum number of available
connections for clients connecting to the
administration port.

The maximum value is 1024. The default value
is 256. Up to two connections can be used by
the system.

N/A -help Displays the supported command-line options
and exits.

Ipc.Timeout integer -ipctimeout integer Sets the time, in seconds, that the
nco_bridgeserv utility waits for a response from
the ObjectServer. The default value is 60.

MaxLogFileSize integer -maxlogfilesize integer Specifies the maximum size (in KB) the log file
can grow to. The default is 1024 KB.

When it reaches the size specified, the
servername.log file is renamed
servername.log_OLD and a new log file is
started. When the new file reaches the
maximum size, it is renamed and the process
starts again.

56 IBM Tivoli Netcool/OMNIbus: Administration Guide

Table 14. Bridge server properties and command-line options (continued)

Property Command-line option Description

MessageLevel string -messagelevel string Specifies the message logging level. Possible
values are: debug, info, warn, error, and fatal.
The default level is warn.

Messages that are logged at each level are as
follows:

v fatal: fatal only

v error: fatal and error

v warn: fatal, error, and warn

v info: fatal, error, warn, and info

v debug: fatal, error, warn, info, and debug

Tip: The value of string can be in uppercase,
lowercase, or mixed case.

MessageLog string -messagelog string Specifies the path to which messages are logged.
The default is $NCHOME/omnibus/log/NCOMS.log.

Windows If the system cannot write to the
specified log file (for example, as the result of a
fatal error) it writes the error to a file named
%NCHOME%\omnibus\log\nco_objserv*.err.

Name string -name string Sets the firewall bridge server name, which
must be unique. This is the name that is
configured in the Server Editor. The default is
NCO_BRIDGE.

Props.CheckNames TRUE | FALSE N/A When TRUE, the firewall bridge server does not
run if any specified property is invalid. The
default is TRUE.

PropsFile string -propsfile string Sets the firewall bridge server properties file
name. The default name is servername.props,
where the servername is defined by the -name
option.

SecureMode TRUE | FALSE -secure Sets the security mode of the firewall bridge
server. If enabled, the firewall bridge server
authenticates client connection requests with a
user name and password. If disabled (the
default), clients can connect to the firewall
bridge server without a user name and
password.

UniqueLog TRUE | FALSE -uniquelog If TRUE, the log file is uniquely named by
appending the process ID of the Bridge Server
to the default log file name. For example, if the
NCO_BRIDGE firewall bridge server is running
as process 1234, the log file is named
NCHOME/omnibus/log/ NCO_BRIDGE.1234.log. The
default is FALSE.

If the MessageLog property is set to stderr or
stdout, the UniqueLog property is ignored.

N/A -version Displays version information about the bridge
server and exits.

Chapter 3. Configuring a firewall bridge server 57

Trusted hosts definition file
The Client Access Bridge server is often deployed in an non-secure network and
provides remote access to an ObjectServer located on an internal network. To
prevent unauthorized access to the ObjectServer, the Client Access Bridge server
uses the trusted hosts definition file to determine which hosts are allowed to access
its client port.

The trusted hosts definition file is a text file which lists all the hosts that have
authority to access the client port of a Client Access Bridge server. The connection
will be dropped if the host attempting to connect to client port is not listed in the
trusted hosts definition file. If the trusted hosts definition file contains at least one
entry then all incoming connections must match that entry. If the trusted hosts
definition file does not contain any entries then all incoming connections will be
accepted.

The trusted hosts definition file is available from the following default location:
$OMNIHOME/etc/NCO_BRIDGE.thosts (UNIX) or %OMNIHOME%\etc\NCO_BRIDGE.thosts
(Windows).

Note: The trusted hosts file is checked only for incoming connections to the Client
Access Bridge server, it is not checked by the Server Access Bridge server.

Syntax

The trusted hosts definition file accepts entries in a variety of formats: example IP
addresses of IPv4 or IPv6, wildcards, and human-readable host name formats.
Additionally comments are supported.

#
Trusted Hosts File
#
IPv4 address - Match this IPv4 address only:
192.168.1.1

IPv4 address/netmask - Match any IPv4 address within the 192.168.1.0 network:
192.168.1.0/255.255.255.0

IPv4 CIDR notation - Match any IPv4 address within the 192.168.1.0 network:
192.168.1.0/24

Hostname - Match that host name only:
darkstar.example.com

Hostname with wildcard - Match all hosts in the ibm.com domain:
*.ibm.com

IPv6 address - Match this IPv6 address only:
[3ffe:1900:4545:3:200:f8ff:fe21:67cf]

IPv6 CIDR notation - Match any IPv6 address within the
3ffe:1900:4545:3:200:f8ff:fe21:0000 network:
[3ffe:1900:4545:3:200:f8ff:fe21:67cf]/120

Disabling access to the interactive command port on Client
Access Bridge server

For additional security, any connections made to the Client Access Bridge server,
using the SQL interactive interface, can be disabled by setting the
Bridge.AllowConnections property to FALSE, or by running the Client Access
Bridge server with the -disallowconnections command line argument. This may

58 IBM Tivoli Netcool/OMNIbus: Administration Guide

be required if the Client Access Bridge server is running in an non-secure network
outside a firewall.

Firewall bridge server command language
The firewall bridge server provides an SQL command interface for configuration
and administration purposes. You can use the SQL interactive interface to connect
to a firewall bridge server and run firewall bridge server commands.

Before you begin to use the firewall bridge command language, ensure you are
familiar with the SQL interactive interface, how to start it, and how to run SQL
commands in the SQL interactive interface.
Related concepts:
“SQL interactive interface” on page 151
You can use the SQL interactive interface (called nco_sql on UNIX and isql on
Windows) to connect to an ObjectServer, and use SQL commands to interact with,
and configure, the ObjectServer.

SHOW PROPS and GET CONFIG
Use the SHOW PROPS and GET CONFIG commands to list all the firewall bridge
server properties and their associated values.

Syntax
SHOW PROPS;
GET CONFIG;

Example

To list all the firewall bridge server properties and their associated values:
1> show props;
2> go
Property Name Type Property Value
-------------------------------- ---- ---
AuthPassword 7
AuthUserName 7
Bridge.AllowConnections 4 TRUE
Bridge.ClientAP.ClientPort 3 10001
Bridge.ClientAP.Hostname 7 omnihost
Bridge.ClientAP.ServerPort 3 10002
Bridge.PAMEnable 4 TRUE
Bridge.PAMServiceName 7 netcool
Bridge.Role 7 SERVER_AP
Bridge.ServerAP.Server 7 NCOMS
Bridge.ThreadPool.MaxJobs 3 10
Bridge.TrustedHostFile 7 /opt/ibm/netcool/omnibus/etc/NCO_BRIDGE.thosts
ConfigCryptoAlg 7 AES
ConfigKeyFile 7
Connections 2 30
Help 4 FALSE
Ipc.QueueSize 2 1024
Ipc.ServerCharacterSet 7 iso_1
Ipc.ServerLanguage 7 us_english
Ipc.ServerLocale 7 default
Ipc.SingleThreaded 4 FALSE
Ipc.SSLCertificate 7
Ipc.SSLEnable 4 FALSE
Ipc.SSLPrivateKeyPassword 7
Ipc.StackSize 2 131072
Ipc.Timeout 2 60
Ipc.TruncateVendorLogFile 4 TRUE
Ipc.VendorClientLibraryVersion 7 version string
Ipc.VendorLogFileSize 2 1024
Ipc.VendorServerLibraryVersion 7 version string
MaxLogFileSize 2 1024
MessageLevel 7 debug
MessageLog 7 stdout

Chapter 3. Configuring a firewall bridge server 59

Name 7 NCO_BRIDGE
PAAwareID 2 0
PAServerName 7
Props.CheckNames 4 TRUE
PropsFile 7 /opt/ibm/netcool/omnibus/etc/NCO_BRIDGE.props
SecureMode 4 FALSE
UniqueLog 4 FALSE
Version 4 FALSE

GET PROP
Use the GET PROP command to return the value of a specific firewall bridge
server property.

Syntax
GET PROP[ERTY] <propname>;

Example

To display a firewall bridge server property and its associated value:
1> get prop ’Name’;
2> go
Property Name Type Property Value
--------------------------------- ---- ----------------
Name 7 NCO_BRIDGE

SHOW DATAFLOWS
Use the SHOW DATAFLOWS command to list the active data-flows across a
firewall bridge server.

Syntax
SHOW DATAFLOWS;

Example

To list active data flows across a firewall bridge server:
1> show dataflows;
2> go
TPWorkerName DataflowID SPSocketFD CPSocketFD SPBytes CPBytes
---------------------- ----------- ----------- ----------- ------- -------
TPWorkerThread_0x74340 4033280 16 17 81 615

The output represents a single active data flow connection across the firewall
bridge server, where each column represents the following:

TPWorkerName The internal name of thread.

DataflowID The internal ID of data flow.

SPSocketFD The operating system file descriptor of the server side of the
connection.

CPSocketFD The operating system file descriptor of the client side of the
connection.

SPBytes The number of bytes transferred from the server to the client
connection.

CPBytes The number of bytes transferred from the client to the server
connection.

60 IBM Tivoli Netcool/OMNIbus: Administration Guide

SET LOG LEVEL TO
Use the SET LOG LEVEL TO command to specify the log level.

Syntax
SET LOG LEVEL TO level;

Where level takes one of the following values:

debug

information

warning

error

fatal

Example

To list all the firewall bridge server properties and their associated values:
1> set log level to DEBUG;
2> go

SHUTDOWN
Use the SHUTDOWN command to instruct the firewall bridge server to shut
down.

Syntax
shutdown;

Example

To shut down the firewall bridge server:
shutdown;

Chapter 3. Configuring a firewall bridge server 61

62 IBM Tivoli Netcool/OMNIbus: Administration Guide

Chapter 4. Using Netcool/OMNIbus Administrator to configure
ObjectServers

The ObjectServer stores, manages, and processes alert and status data that is
collected by external applications such as probes and gateways. You can use
Netcool/OMNIbus Administrator to configure your ObjectServer objects and to
configure process control.

You can use Netcool/OMNIbus Administrator to configure the following
ObjectServer objects:
v Users, groups, roles, and restriction filters
v Event list menus
v Tools and prompts
v Trigger groups and triggers
v Procedures
v User-defined signals
v Event list alert severity colors (Windows event lists only)
v Conversions
v Classes
v Column visuals
v ObjectServer databases, files, and properties
v Channels for accelerated event notification

Getting started with Netcool/OMNIbus Administrator
Netcool/OMNIbus Administrator provides a visual interface from which you can
manage your ObjectServers and configure process control.

Considerations for multicultural support
Tivoli Netcool/OMNIbus supports a variety of single byte and multi-byte character
encodings for use in different locales.

If user names and passwords are specified in multi-byte characters and these
credentials are to be verified against external authentication sources, then these
sources must also support multi-byte characters. If multi-byte characters are not
supported, user names and passwords must be specified using ASCII characters.

When using Netcool/OMNIbus Administrator, you must ensure that the character
set encoding of each ObjectServer that is being managed has a corresponding entry
in the $NCHOME/omnibus/java/jars/csemap.dat file. This file provides a mapping
between Sybase and JRE character set encoding naming conventions. If the
character set encoding of an ObjectServer is missing from csemap.dat, you must
add a mapping to this file by using the format:
Sybase_encoding Java_encoding

For example:
ascii_7 ASCII

© Copyright IBM Corp. 1994, 2013 63

For further information on multicultural support, see the IBM Tivoli
Netcool/OMNIbus Installation and Deployment Guide.

Starting Netcool/OMNIbus Administrator
You must run the nco_config utility to start Netcool/OMNIbus Administrator.

About this task

To start Netcool/OMNIbus Administrator from the command line:

Procedure
1. Enter the appropriate command for your operating system:

Table 15. Starting Netcool/OMNIbus Administrator

Option Description

UNIX $NCHOME/omnibus/bin/nco_config [-option value ...]

Windows %NCHOME%\omnibus\bin\nco_config.vbs [-option value ...]

In this command, -option is a valid command-line option and value is the
value you are setting the option to.

2. If this is the first time you are starting Netcool/OMNIbus Administrator, or
your communications settings file ($NCHOME/etc/omni.dat on UNIX and
%NCHOME%\ini\sql.ini on Windows) has changed since you last started
Netcool/OMNIbus Administrator, the Import Connections Wizard is run. The
wizard enables you to choose which ObjectServers and process agents you
want to configure using Netcool/OMNIbus Administrator.

Tip: After you have started Netcool/OMNIbus Administrator, you can select
File > Import at any time to import new communications information from the
omni.dat file (sql.ini on Windows). For more information on configuring
component communications, see the IBM Tivoli Netcool/OMNIbus Installation and
Deployment Guide.

Netcool/OMNIbus Administrator properties and command-line
options
Netcool/OMNIbus Administrator contains a set of properties and command-line
options for configuring the component.

The default Netcool/OMNIbus Administrator properties file is
$NCHOME/omnibus/etc/nco_config.props (%NCHOME%\omnibus\etc\nco_config.props
on Windows). The default properties file is read each time you start
Netcool/OMNIbus Administrator; however, you can use the -propsfile
command-line option to specify an alternative properties file.

You can use the properties file as a template and modify it for different purposes.
For example, you could use different properties files for logging into different
ObjectServers.

The properties and command-line options for nco_config (nco_config.vbs on
Windows) are described in the following table.

64 IBM Tivoli Netcool/OMNIbus: Administration Guide

Table 16. Netcool/OMNIbus Administrator properties and command-line options

Property Command-line option Description

audit.active 0 | 1 -auditlogactive 0 | 1 Determines whether audit logging is enabled.

The default is 1; audit logging is enabled.

audit.file.max.count integer -auditfilecount integer The maximum number of Netcool/OMNIbus
Administrator audit log files.

The default is 4.

audit.file.max.size integer -auditfilesize integer The maximum file size (in Bytes) for the
Netcool/OMNIbus Administrator audit log files.

The default is 10000.

audit.file.name string -auditfile string The full path to the Netcool/OMNIbus Administrator
audit log file.

The default is $NCHOME/omnibus/log/
nco_config_audit.log.

N/A -help Displays help on the command-line options and exits.

java.security.policy string -policyfile string The full path to the Java™ security policy file.

log.console.active 0 | 1 -logtoconsole 0 | 1 Determines whether logging information is sent to the
command shell.

The default is 1; logging information is sent to the
command shell.

log.directory.name string -logdir string The location where the Netcool/OMNIbus Administrator
system log file is saved.

The default is $NCHOME/omnibus/log.

log.file.max.count integer -logfilecount integer The maximum number of Netcool/OMNIbus
Administrator system log files.

The default is 4.

log.file.max.size integer -logfilesize integer The maximum file size (in Bytes) for the
Netcool/OMNIbus Administrator system log files.

The default is 10000.

log.file.name string -logfile string The name of the Netcool/OMNIbus Administrator system
log file.

The default is nco_config_system.log.
Tip: To change the directory where this file is stored, use
the log.directory.name property or -logdir option.

Chapter 4. Using Netcool/OMNIbus Administrator to configure ObjectServers 65

Table 16. Netcool/OMNIbus Administrator properties and command-line options (continued)

Property Command-line option Description

messagelevel string -messagelevel string Specifies the message logging level for system and audit
logging. Possible values are: FATAL, ERROR, WARN, INFO, and
DEBUG. The default level is ERROR.

Messages that are logged at each level are listed below:

FATAL - FATAL only.

ERROR - FATAL and ERROR.

WARN - FATAL, ERROR, and WARN.

INFO - FATAL, ERROR, WARN, and INFO.

DEBUG - FATAL, ERROR, WARN, INFO, and DEBUG.
Note: The value of string must be in uppercase.

nco_jdbc.timeout integer -jdbctimeout integer The Java Database Connectivity (JDBC) timeout, in
seconds.

The default is 600.

N/A -propsfile string The full path to the Netcool/OMNIbus Administrator
properties file.

The default is $NCHOME/omnibus/etc/nco_config.props
(%NCHOME%\omnibus\etc\nco_config.props on Windows).

server string -server string The name of the ObjectServer to which you are
connecting.

system.create.conversion 0 |
1

-createconversion 0 |
1

Sets up the system so that it automatically creates
conversion for users that you create.

The default is 1, which indicates that conversions are
automatically created.

system.conversion.type string -conversiontype string Creates a conversion between the user ID, and the user
name or full name of each newly-created user. Possible
values are fullname and username.

The default is fullname, which creates a conversion
between the user ID and the full name.

user.name string -user string The Netcool/OMNIbus Administrator login user name.

user.password string -password string The Netcool/OMNIbus Administrator login password.

N/A -version Displays version information and then exits.

Property and command-line processing
Each property in the Netcool/OMNIbus Administrator properties file has a default
value. In an unedited properties file, properties are listed with their default values,
commented out with a number sign (#) at the beginning of the line. A property
and its corresponding value are separated by a colon (:).

You can edit the property values by using a text editor. To override the default,
change a setting in the properties file and remove the number sign (#).

If you change a setting on the command line, this overrides both the default value
and the setting in the properties file. To simplify the command that you enter to
run nco_config, add as many properties as possible to the properties file rather

66 IBM Tivoli Netcool/OMNIbus: Administration Guide

than using the command-line options.

Connecting to an ObjectServer
After starting Netcool/OMNIbus Administrator, you must connect to the
ObjectServer that you want to configure.

About this task

To connect to an ObjectServer:

Procedure
1. From the Netcool/OMNIbus Administrator window, select the Reports menu

button in the left pane.

2. Click OS. The ObjectServer Report window opens. It displays all the
ObjectServers that were selected when the Import Connections Wizard was last
run.

3. Right-click the ObjectServer to which you want to connect. From the pop-up
menu, perform either of the following actions:
v Click Connect As if you are connecting for the first time or want to enter

updated connection information. You are prompted for a user name and
password for the ObjectServer.
If you select the Always use for this connection check box, the user name
and password are saved and automatically reused for connections to this
ObjectServer. If you select the Use as default check box, the values specified
for the user name and password are automatically filled in next time the
connection window is displayed. If you select both check boxes, the Always
use for this connection user name and password values take precedence.
These settings last for the length of the application session.

v Click Connect to use previously-specified connection information.
4. Click OK.

Results

The pane in the center is the ObjectServer configuration window. In this work area
you can view, modify, and manage ObjectServer objects.

Figure 6. Navigator and Reports menu buttons

Chapter 4. Using Netcool/OMNIbus Administrator to configure ObjectServers 67

Related tasks:
“Selecting ObjectServer objects to configure” on page 71
A set of menu buttons are available on the left side of the Netcool/OMNIbus
Administrator window for selecting the ObjectServer object that you want to
configure.

Connecting to a process agent
Before you can connect to a process agent, you must ensure that the process agent
has started.

About this task

To connect to a process agent:

Procedure
1. From the Netcool/OMNIbus Administrator window, select the Reports menu

button in the left pane.

2. Click PA. The Process Agent Report pane opens, and shows all the process
agents that were selected when the Import Connections Wizard was last run.

Tip: After you have started Netcool/OMNIbus Administrator, you can click
File > Import at any time to import new communications information from the

Figure 7. Netcool/OMNIbus Administrator - ObjectServer configuration window

Figure 8. Navigator and Reports menu buttons

68 IBM Tivoli Netcool/OMNIbus: Administration Guide

omni.dat file (sql.ini on Windows). For more information on configuring
component communications, see the IBM Tivoli Netcool/OMNIbus Installation and
Deployment Guide.

3. Right-click the process agent. From the pop-up menu, perform either of the
following actions:
v Click Connect As if you are connecting for the first time or want to enter

updated connection information. The Process Agent Security window opens.
Complete this window as follows:

Username
Type the user name that is used to log into the process agent.

On UNIX, any user that needs access to the process agent must be a
member of a UNIX user group that you identify as an administration
group for this purpose. On Windows, the user must be a valid user
with a local or domain account.

Password
Type the password that is used to log into the process agent.

Always use for this connection
Select this check box to indicate that the specified user name and
password should be saved for automatic reuse on subsequent
connection attempts to this process agent. These settings last for the
length of the application session.

Use as default
Select this check box if you want the values specified for the user
name and password to be automatically filled in the next time this
window is displayed. These settings last for the length of the
application session.

Note: If you select both check boxes, the Always use for this
connection setting takes precedence.

v Click Connect to use previously-specified connection information.
4. Click OK.

The Service/Process Details window opens. This window contains information
about the processes and services configured under this process agent.

Related concepts:
Chapter 7, “Using process control to manage processes and external procedures,”
on page 275
The Tivoli Netcool/OMNIbus process control system performs two primary tasks.
It manages local and remote processes, and runs external procedures that are
specified in automations.

Working with Tivoli Netcool/OMNIbus components
From the button bar in the left-hand pane of the Netcool/OMNIbus Administrator
window, you must select the components that you want to view or configure.
v Select the Reports menu button, and then click Host, OS, or PA. Select an

ObjectServer to configure from the ObjectServer Report window, or a process
agent to configure from the PA Report window.

v Select the Navigator menu button to view the components by host name, and
then select the component that you want to configure.

The following figure shows the menu buttons used for selecting a component.

Chapter 4. Using Netcool/OMNIbus Administrator to configure ObjectServers 69

When you select a component, the associated window or pane is shown in the
display area on the right. The available toolbar buttons and menu items in the
Netcool/OMNIbus Administrator window change depending on your selection.

Secure sockets layer connections
If Netcool/OMNIbus Administrator is using an encrypted SSL connection to an
ObjectServer or process agent, a lock icon appears in the bottom, left corner of
the window.

For information about using SSL with Tivoli Netcool/OMNIbus, see the IBM Tivoli
Netcool/OMNIbus Installation and Deployment Guide.

Validating server certificates
When Tivoli Netcool/OMNIbus is set up for SSL communication, the ObjectServer
and process agent present their server certificates to the Netcool/OMNIbus
Administrator client, on request, to establish a connection.

About this task

If a mismatch is detected between the common name defined in the server
certificate and the server name that the Netcool/OMNIbus Administrator client
uses to identify and connect to the server, a Certificate Validation window opens
so that you can choose whether to accept or reject the server certificate.
Connections will not be established if the certificate is invalid.

The Certificate Validation window provides a reason for the validation request and
presents a number of options. Complete the window as follows:

Procedure
1. Select one of the options to accept or reject the certificate:

v Accept this certificate permanently: Select this option to permanently accept
this certificate as valid. You will no longer be prompted to accept this
certificate during the current or subsequent Netcool/OMNIbus Administrator
sessions.

Important: Before you accept the certificate, click Examine Certificate to
review the contents of the certificate within the Certificate Details window.
After careful examination, click OK to return to the Certificate Validation
window.

v Accept this certificate temporarily for this session: Select this option to
accept the certificate for the current session only, after examining the
certificate by using the Examine Certificate button. No more validation
prompts will be generated for the duration of the session.

v Do not accept this certificate: Select this option to reject the certificate and
cancel the connection between the server and client.

2. Click OK to continue with the connection process. Click Cancel (or the Close
button in the title bar) to reject the certificate irrespective of the option that you
selected in step 1.

Figure 9. Navigator and Reports menu buttons

70 IBM Tivoli Netcool/OMNIbus: Administration Guide

Results

If you chose to accept the certificate permanently, the common name and public
key from the certificate are recorded in the following file:

userdir/.netcool/nco_config_settings/user_allowed_certs.properties

In this file path, userdir represents your home directory.

The user_allowed_certs.properties file is a system file and is not intended for
modification by users. On subsequent connection attempts, this file is read and
used to identify any common names that were previously accepted.

You can clear the contents of the properties file by specifying the following
command-line argument:

mode.clear.certs "true"

For further information about SSL certificates, see the IBM Tivoli Netcool/OMNIbus
Installation and Deployment Guide.

Selecting ObjectServer objects to configure
A set of menu buttons are available on the left side of the Netcool/OMNIbus
Administrator window for selecting the ObjectServer object that you want to
configure.

About this task

These menu buttons are labeled as follows:

Procedure
v User
v Menu
v Automation
v Visual
v System

Results

The following figure shows these buttons.

Click each menu button to obtain a set of related objects that you can configure.
The available toolbar buttons and menu items in the Netcool/OMNIbus
Administrator window change depending on your selection.

Working with objects

Figure 10. User, Menu, Automation, Visual, and System menu buttons

Chapter 4. Using Netcool/OMNIbus Administrator to configure ObjectServers 71

When working with an object, several ways are available for you to select an
option: the menu bar, the toolbar, and a pop-up menu. For example, if you want to
create a user, you must first select the User menu button and then click Users to
obtain the Users pane. You can then perform any of the following actions to create
the user:
v Click Item > Add User.
v From the toolbar, click Add User.
v From the Users pane, right-click and then click Add User from the pop-up

menu.
If you are editing or deleting objects, you can perform an equivalent set of
actions. If you are editing objects, you can additionally double-click the object to
open the relevant window for editing.

Tip: You can also use SQL commands to interact with, and configure, the
ObjectServer.

Setting preferences in Netcool/OMNIbus Administrator
You can set preferences in Netcool/OMNIbus Administrator by sorting results
tables, setting column display appearance using views, and selecting rows to
display using filters. You can also copy and paste, configure editor syntax coloring,
and select a web browser for displaying online help.

Sorting results tables
Many Netcool/OMNIbus Administrator windows (including the Host Report
window, PA Report window, ObjectServer Report window, SQL results, and
database tables) display information as results tables.

About this task

You can click a column title to sort the rows of the table by the values of that
column. Click multiple times to select either an ascending or descending sort,
indicated by the up or down arrow next to the column title.

Setting column display appearance using views
You can change how columns are displayed in results tables, which include the
Host Report window, PA Report window, ObjectServer Report window, SQL
results, and database tables.

About this task

To hide a column, right click the column header and click Hide Column.

To align a column, right-click the column header and click Align Column. Then
click Left, Right, or Center.

To select which columns to display from a list of all columns:

Procedure
1. Right-click the column header and click Table Columns. The Column Settings

window opens.
2. Select the columns that you want to view in the current window. You can click

a column name to select or deselect it. A tick is displayed next to columns that
are selected for display. Click Close to save your settings.

72 IBM Tivoli Netcool/OMNIbus: Administration Guide

Selecting rows to display using filters
You can change which rows are displayed in results tables, which include the Host
Report, PA Report, and ObjectServer Report windows, SQL results, and database
tables, by creating filter conditions.

About this task

To create a filter:
1. Right click the column header for the column to which you wish to apply a

filter and click Filter On. The Filter window opens.
2. Select the column, filter operation, and value for the condition.

On the Filter window, you can:
v Click OK to create the filter and close the window
v Click Apply to create the filter and keep the window open
v Click Cancel to close the window without creating a filter

To create a filter based on the values in a particular table cell:
1. Right click in the cell and select the filter icon. A sub-menu appears with

matching the column name and value and a selection of either equals or not
equals operators.

2. Select the appropriate condition for the filter.

When a filter is applied to a results table, the filter icon is displayed in the
status bar. For each column to which a filter is applied, the icon also appears in the
column header.

To see all filter conditions that have been applied to the table, right click the
column header and click Filter Details. The Filter Settings window displays all
filter conditions that are currently applied to the table.

To remove all filters, right click the column header and click See All Values.

Copying and pasting
You can use the Copy and Paste functions in the Edit menu on some types of
information. For example, you can copy an existing ObjectServer tool, paste it, and
then modify it to create a new tool.

About this task

You can copy and paste the following items:

Procedure
v Users (in the same ObjectServer only)
v Restriction filters
v Menus and menu items
v Tools
v Prompts
v Triggers
v Procedures
v User-defined signals

Chapter 4. Using Netcool/OMNIbus Administrator to configure ObjectServers 73

v Colors
v Column visuals
v ObjectServer files
v Databases
v Tables
v Processes (under process control)
v Services (under process control)

Configuring colors for syntax elements in the default SQL
editors
You can enter SQL syntax in some Netcool/OMNIbus Administrator windows (for
example, when creating or editing triggers). By default, Netcool/OMNIbus
Administrator provides coloring to highlight different syntax elements. You can
change the default syntax coloring scheme.

About this task

To change the default syntax coloring scheme:

Procedure
1. From the Netcool/OMNIbus Administrator window, click Tools > Editor

Options. The Highlight Details window opens.
2. Complete this window as follows:

Element
Select the syntax element for which you want to view or change the
color.

Color This field displays the currently-selected color for the element. Click the
button next to this field to select a new color. You can choose the color
using its swatch, HSB, or RGB values.

Use Default
Select this check box to use the default color for the selected element.

3. Save or cancel your changes as follows:

OK Click this button to save the color details and close the window.

Cancel
Click this button to close the window without saving your changes.

Selecting a Web browser for displaying online help
In Netcool/OMNIbus Administrator, you must select a Web browser in which you
want to view the online help. The online help is deployed using IBM® Eclipse Help
System, on which a number of browsers are supported.

About this task

For a list of supported online help Web browsers, see the IBM Tivoli
Netcool/OMNIbus Installation and Deployment Guide.

To select the Web browser for displaying online help:

Procedure
1. From Netcool/OMNIbus Administrator, select Tools > Configure Tools. The

Choose Tool window opens.

74 IBM Tivoli Netcool/OMNIbus: Administration Guide

2. Select Browser. The External Program window opens.
3. Complete this windows as follows:

Tool name
This field displays the type of tool that you are configuring.

Executable
Type the full path and name of the executable program for the tool
type. Alternatively, click the button to the right of the field to search for
and select the executable program.

Arguments
Type any command-line arguments to run with this executable
program.

Run time environment
Select the runtime environment.

Note: The Run time environment field is not available if you are configuring a
Web browser.

4. Save or cancel your changes as follows:

OK Click this button to save the external program details and close the
window.

Cancel
Click this button to close the window without saving your changes.

Exiting Netcool/OMNIbus Administrator
To exit Netcool/OMNIbus Administrator, click File > Exit.

Managing authorization with users, groups, roles, and restriction filters
Authorization is the verification of the rights to view and modify information.

About this task

Access to ObjectServer objects is controlled through groups (collections of users),
and roles (collections of system and object permissions) granted to groups.
Permissions control access to objects and data in the ObjectServer. By combining
one or more permissions into roles, you can manage access quickly and efficiently.

Administrators can allow and deny actions on the system and for individual
objects by assigning permissions to roles, and granting or revoking roles for
appropriate groups of users. You can use Netcool/OMNIbus Administrator to
grant and revoke permissions for the users of a Tivoli Netcool/OMNIbus system.

For example, creating automations requires knowledge of Tivoli Netcool/OMNIbus
operations and the way a particular ObjectServer is configured. You do not
typically want all of your users to be allowed to create or modify automations.
One solution is to create a role named AutoAdmin, with permissions to create and
alter triggers, trigger groups, files, SQL procedures, external procedures, and
signals. You can then grant that role to a group of administrators who will be
creating and updating triggers.

To set up Tivoli Netcool/OMNIbus authorization, configure security objects in the
following order:

Chapter 4. Using Netcool/OMNIbus Administrator to configure ObjectServers 75

Procedure
1. Roles: Assign permissions to roles.
2. Groups: Assign one or more roles to each group. The assigned roles determine

the actions that the group members can perform on database objects.
3. Users: Add users to groups. You must assign each user to one or more groups.

Results

You can create logical groupings such as super users or system administrators,
physical groupings such as London or New York NOCs, or any other groupings to
simplify your security setup.

Configuring roles
Roles are collections of permissions that you can assign to users and groups.

Tivoli Netcool/OMNIbus provides a number of default roles. You can also create
custom roles for association with users and groups. The default roles are described
in the following table.

Table 17. Default roles

Role name Description

CatalogUser This role includes permissions to view information about
system, tools, security, and desktop database tables.

This role provides a basis for Tivoli Netcool/OMNIbus
permissions. This role does not provide sufficient
permissions to use any Tivoli Netcool/OMNIbus
applications.

Assign this role to all groups.

AlertsUser This role includes the following permissions:

v View, update, and delete entries in the alerts.status table

v View, insert, and delete entries in the alerts.journal table

v View and delete entries in the alerts.details table

Use this role together with the CatalogUser role, to display
and manipulate alerts, create filters and views, and run
standard tools in the event list.

AlertsProbe This role includes permissions to insert and update entries
in the alerts.status table, and insert entries in the
alerts.details table.

This role, in combination with the CatalogUser role,
provides the permissions that a probe needs to generate
alerts in the ObjectServer. Grant these permissions to any
user that runs a probe application.

76 IBM Tivoli Netcool/OMNIbus: Administration Guide

Table 17. Default roles (continued)

Role name Description

AlertsGateway This role includes permissions to insert, update, and delete
entries in the alerts.status table, alerts.details table,
alerts.journal table, alerts.conversions table,
alerts.col_visuals table, alerts.colors table, the desktop tools
tables, and the tables in the transfer database. The
transfer database is used internally by the bidirectional
ObjectServer Gateway to synchronize security information
between ObjectServers.

This role also includes permissions to select, insert, update,
and delete entries in the master.servergroups table, and
permissions to raise the following signals:
gw_counterpart_down, gw_counterpart_up,
gw_resync_start, and gw_resync_finish.

This role, in combination with the CatalogUser role,
provides the permissions that a gateway needs to generate
alerts in the ObjectServer. Grant these permissions to any
user that runs a gateway application.

DatabaseAdmin This role includes permissions to create databases and files,
and to create tables in the alerts, tools, and service
databases. This role also includes permissions to modify or
drop the alerts.status, alerts.details, and alerts.journal
tables, and permissions to create and drop indexes in the
alerts.status, alerts.details, and alerts.journal tables.

This role, in combination with the CatalogUser role,
provides permissions to create relational data structures in
the ObjectServer.

AutoAdmin This role includes permissions to create trigger groups,
files, SQL procedures, external procedures, and user signals.
This role also includes permissions to create, modify, and
drop triggers in the default trigger groups, and to modify
or drop default trigger groups.

This role, in combination with the CatalogUser role,
provides permissions to create automations in the
ObjectServer.

ToolsAdmin This role includes permissions to delete, insert, and update
all tools tables.

This role, in combination with the CatalogUser role,
provides permissions to create and modify tools that can be
run from the desktop and Netcool/OMNIbus Administrator
.

DesktopAdmin This role includes permissions to update all desktop
catalogs to insert, update, and delete colors, visuals, menus,
classes, resolutions, and conversions.

This role, in combination with the CatalogUser role,
provides permissions to customize the desktop.

SecurityAdmin This role, in combination with the CatalogUser role,
includes permissions to manipulate users, groups, and roles
by using Netcool/OMNIbus Administrator or the SQL
interactive interface. This role also includes permissions to
set properties and drop user connections.

Chapter 4. Using Netcool/OMNIbus Administrator to configure ObjectServers 77

Table 17. Default roles (continued)

Role name Description

ISQL This role, in combination with the CatalogUser role,
includes permission to view ObjectServer data by using the
SQL interactive interface.

ISQLWrite This role, in combination with the CatalogUser role,
includes permissions to view and modify ObjectServer data
by using the SQL interactive interface.

SuperUser This role has all available permissions. You cannot modify
the SuperUser role.

Public All users are assigned this role. By default, the Public role
is not assigned any permissions. You can modify, but not
drop, the Public role.

ChannelAdmin This role includes permissions to set up channels for
accelerated event notification.

ChannelUser This role includes permissions to receive and act on
notifications for accelerated events that are broadcast over
channels.

RegisterProbe This role includes permissions to add and update entries in
the registry.probes table. It must be assigned to all probe
user accounts.

RegistryReader This role includes permissions view data in the
registry.probes table.

This role does not include permission to modify data in the
registry.probes table.

RegistryAdmin This role includes permissions to view, modify, add, and
delete data in the registry.probes table.

This role is intended for system administrators only, to
enable them to fix unexpected problems with probe
registration.

Roles determine the types of tasks that users in the group can perform. For
example, if you assign the AlertsUser role to a group, users in that group are
granted the following permissions:
v View, update, and delete entries in the alerts.status table
v View, insert, and delete entries in the alerts.journal table
v View and delete entries in the alerts.details table
Related concepts:
“Configuring groups” on page 81
Use groups to organize Tivoli Netcool/OMNIbus users into units with common
functional goals. All members of a group have the permissions assigned to the
group roles.
“Configuring users” on page 85
You can create and modify Tivoli Netcool/OMNIbus users, and organize these
users into groups. You can assign roles to the user groups, to control access to
ObjectServer objects.

78 IBM Tivoli Netcool/OMNIbus: Administration Guide

Creating and editing roles
Use roles to assign permissions to users who are members of a particular group.

Before you begin

You must have started Netcool/OMNIbus Administrator by running the
nco_config utility. For more information, see “Starting Netcool/OMNIbus
Administrator” on page 64.

About this task

To create or edit a role:

Procedure
1. From the Netcool/OMNIbus Administrator window, select the User menu

button.
2. Click Roles. The Roles pane opens.
3. To add a role, click Add Role in the toolbar. The Role Details window opens.
4. To edit a role, select the role to edit and then click Edit Role in the toolbar. The

Role Details window opens.
5. Define a new role as follows:

Role Name
Type a unique name for the role. If you are editing a role, you cannot
change the name.

Tip: When creating ObjectServer objects, their names must begin with
an uppercase or lowercase letter, followed by uppercase or lowercase
letters, numbers, or underscore (_) characters, up to 40 characters in
length. User, group, and role names can be any text string up to 64
characters in length and can include spaces. Names of ObjectServer objects
are case-sensitive.

Role ID
Specify a unique numerical identifier for this role. If you are editing a
role, you cannot change the role ID.

6. From the Details tab, enter a meaningful description for the role or update the
description.

7. From the Permissions tab, grant permissions to the role or revoke permissions,
as follows:

Add permission
Click this button to grant permissions to the role. The Permission
Objects window opens. Complete this window as follows:

Object Type
Select the type of object to which you want to grant or revoke
permissions.

Available Objects
The contents of this list are dependent on the object type
selected. The Available Objects list displays the objects for
which permissions have not been granted. To grant permissions
to one or more objects, use the arrow keys to move the objects
to the Selected Objects list.

Chapter 4. Using Netcool/OMNIbus Administrator to configure ObjectServers 79

To move all objects to the Selected Objects list, click >>. To
move a single object or multiple objects to the Selected Objects
list, select each object and then click >. You can use the SHIFT
key for consecutive selections, or the CTRL key for
non-consecutive selections.

Selected Objects
This list displays the objects for which permissions have been
granted. To revoke permissions for one or more objects, use the
arrow keys to move the objects to the Available Objects list.

To move all objects to the Available Objects list, click <<. To
move a single object or multiple objects to the Available
Objects list, select each object and then click <. You can use the
SHIFT key for consecutive selections, or the CTRL key for
non-consecutive selections.

Tip: You can add multiple object permissions by selecting each
required object type in turn from the Object Type list, and then
adding the object to the Selected Objects list.

OK Click this button to save the permissions configured for the
role, and close the Permission Objects window.

Cancel
Click this button to close the window without saving your
changes.

When you return to the Permissions tab on the Role Details window,
the permissions tree is updated with your changes. The parent node
shows the main object, and the nested child nodes show associated
subobjects. You can expand these subobjects to view the associated SQL
permissions; for example ALTER, DELETE, and DROP. Select the check
box associated with the SQL permission to assign that permission to the
role. Clear the check box to revoke the permission.

Delete permission
From the permissions tree, select a parent or child node for which you
want to revoke permissions, and then click this button. The node is
deleted from the tree.

8. Save or cancel your changes as follows:

OK Click this button to save the role details and close the window. New
roles are added to the Roles pane.

Cancel
Click this button to close the window without saving your changes.

Related tasks:
“Starting Netcool/OMNIbus Administrator” on page 64
You must run the nco_config utility to start Netcool/OMNIbus Administrator.

80 IBM Tivoli Netcool/OMNIbus: Administration Guide

Deleting roles

Before you begin

You must have started Netcool/OMNIbus Administrator by running the
nco_config utility. For more information, see “Starting Netcool/OMNIbus
Administrator” on page 64.

About this task

To delete a role:

Procedure
1. From the Netcool/OMNIbus Administrator window, select the User menu

button.
2. Click Roles. The Roles pane opens.
3. Select the role that you want to delete and click Delete in the toolbar. The role

is deleted. If this role was assigned to a group, the role is removed from the
group.

Related tasks:
“Starting Netcool/OMNIbus Administrator” on page 64
You must run the nco_config utility to start Netcool/OMNIbus Administrator.

Configuring groups
Use groups to organize Tivoli Netcool/OMNIbus users into units with common
functional goals. All members of a group have the permissions assigned to the
group roles.

Tivoli Netcool/OMNIbus provides a number of default groups. You can also create
custom groups. The default groups are described in the following table.

Table 18. Default groups

Group name Description

Probe This group is assigned the CatalogUser, AlertsUser,
AlertsProbe, and RegisterProbe roles.

Gateway This group is assigned the CatalogUser, AlertsUser, and
AlertsGateway roles.

ISQL This group is assigned the ISQL role.

ISQLWrite This group is assigned the ISQLWrite role.

Public This group is assigned the Public role. All users are
members of this group.

Normal This group is assigned the CatalogUser, AlertsUser,
ChannelUser, and RegistryReader roles. This group cannot
be deleted or renamed.

Administrator This group is assigned the CatalogUser, AlertsUser,
ToolsAdmin, DesktopAdmin, ChannelUser, ChannelAdmin,
RegistryAdmin, and OSLCAdmin roles. This group cannot
be deleted or renamed.

Chapter 4. Using Netcool/OMNIbus Administrator to configure ObjectServers 81

Table 18. Default groups (continued)

Group name Description

System This group is assigned the CatalogUser, AlertsUser,
ToolsAdmin, DesktopAdmin, AlertsProbe, AlertsGateway,
DatabaseAdmin, AutoAdmin, SecurityAdmin, ISQL,
ISQLWrite, SuperUser, ChannelUser, ChannelAdmin,
OSLCAdmin, and RegistryAdmin roles. This group cannot
be deleted or renamed.

Related concepts:
“Configuring roles” on page 76
Roles are collections of permissions that you can assign to users and groups.
“Configuring users” on page 85
You can create and modify Tivoli Netcool/OMNIbus users, and organize these
users into groups. You can assign roles to the user groups, to control access to
ObjectServer objects.

Creating and editing groups

Before you begin

You must have started Netcool/OMNIbus Administrator by running the
nco_config utility. For more information, see “Starting Netcool/OMNIbus
Administrator” on page 64.

About this task

To create or edit a group:

Procedure
1. From the Netcool/OMNIbus Administrator window, select the User menu

button.
2. Click Groups. The Groups pane opens.
3. To add a group, click Add Group in the toolbar. The Group Details window

opens.
4. To edit a group, select the group to edit and then click Edit Group in the

toolbar. The Group Details window opens.
5. Define the group as follows:

Group Name
Type a unique name for the group. If you are editing a group, you
cannot change the name.

Tip: When creating ObjectServer objects, their names must begin with
an uppercase or lowercase letter, followed by uppercase or lowercase
letters, numbers, or underscore (_) characters, up to 40 characters in
length. User, group, and role names can be any text string up to 64
characters in length and can include spaces. Names of ObjectServer objects
are case-sensitive.

Group ID
Specify a unique numerical identifier for the group. If you are editing a
group, you cannot change the group ID.

82 IBM Tivoli Netcool/OMNIbus: Administration Guide

Description
Type a meaningful description for the group, or update the description.

6. From the Roles tab, specify the roles that you want to assign to the group.
When you assign a role to a group of users, any user added to that group
assumes the security permissions granted to the role. Complete the tab as
follows:

Available Roles
This list displays the available roles that you can assign to the group.
To assign one or more of these roles, use the arrow keys to move the
roles to the Applied Roles list.

To move all roles to the Applied Roles list, click >>. To move a single
role or multiple roles to the Applied Roles list, select each role and
then click >. You can use the SHIFT key for consecutive selections, or
the CTRL key for non-consecutive selections.

Applied Roles
This list displays the roles that are already assigned to the group. To
unassign roles, use the arrow keys to move the roles to the Available
Roles list.

To move all roles to the Available Roles list, click <<. To move a single
role or multiple roles to the Available Roles list, select each role and
then click <. You can use the SHIFT key for consecutive selections, or
the CTRL key for non-consecutive selections.

Add new role
Click this button if you want to create a new role that can then be
assigned to this group. The Role Details window opens. Complete this
window and save your changes.

When you return to the Roles tab, the new role will be added to the
Available Roles list. You can then add this role to the group.

7. From the Restriction Filters tab, specify any restriction filters that you want to
assign to the group. You can use restriction filters to prevent the group of users
from viewing or modifying certain rows in ObjectServer tables. Complete the
tab as follows:

All Restriction Filters
This list displays the available restriction filters that have been set up.
To assign a restriction filter to the group, select the restriction filter row
and then click Add Restriction Filter. The selected restriction filter is
transferred to the Assigned Restriction Filters list.

If no restriction filters have previously been set up, or if you want to
create a new restriction filter and assign it to the group, click New
Restriction Filter. The Restriction Filter Details window opens.
Complete this window and save your changes.

When you return to the Restriction Filters tab, the new restriction filter
will be added to the All Restriction Filters list. You can then assign
this restriction filter to the group.

Assigned Restriction Filters
This list displays the restriction filters that are assigned to the group. To
unassign a restriction filter, select the restriction filter row and then
click Remove Restriction Filter. The selected restriction filter is
transferred to the All Restriction Filters list.

Chapter 4. Using Netcool/OMNIbus Administrator to configure ObjectServers 83

8. From the Users tab, specify the users that you want to add as group members.
Complete the tab as follows:

Non members
This list displays the available users that you can assign as members of
the group. To assign one or more of these users, use the arrow keys to
move the users to the Members list.

To move all users to the Members list, click >>. To move a single user
or multiple users to the Members list, select each user and then click >.
You can use the SHIFT key for consecutive selections, or the CTRL key
for non-consecutive selections.

Members
This list displays the users who are already assigned to the group. To
unassign users, use the arrow keys to move the users to the Non
members list.

To move all users to the Non members list, click <<. To move a single
user or multiple users to the Non members list, select each user and
then click <. You can use the SHIFT key for consecutive selections, or
the CTRL key for non-consecutive selections.

Add new user
Click this button if you want to create a new user that can then be
assigned to this group. The User Details window opens. Complete this
window and save your changes.

When you return to the Users tab, the new user will be added to the
Non members list. You can then add this user to the group.

9. Save or cancel your changes as follows:

OK Click this button to save the group details and close the window. New
groups are added to the Groups pane.

Cancel
Click this button to close the window without saving your changes.

Related tasks:
“Starting Netcool/OMNIbus Administrator” on page 64
You must run the nco_config utility to start Netcool/OMNIbus Administrator.
“Creating and editing roles” on page 79
Use roles to assign permissions to users who are members of a particular group.
“Creating and editing restriction filters” on page 90
“Creating and editing users” on page 85
When setting up users, you must assign them to groups with allocated roles. This
determines the user permissions.

Deleting groups
You cannot delete the Normal, Administrator, and System groups.

Before you begin

You must have started Netcool/OMNIbus Administrator by running the
nco_config utility. For more information, see “Starting Netcool/OMNIbus
Administrator” on page 64.

About this task

To delete a group:

84 IBM Tivoli Netcool/OMNIbus: Administration Guide

Procedure
1. From the Netcool/OMNIbus Administrator window, select the User menu

button.
2. Click Groups. The Groups pane opens.
3. Select the group that you want to delete and click Delete in the toolbar. The

group is deleted.
Related tasks:
“Starting Netcool/OMNIbus Administrator” on page 64
You must run the nco_config utility to start Netcool/OMNIbus Administrator.

Configuring users
You can create and modify Tivoli Netcool/OMNIbus users, and organize these
users into groups. You can assign roles to the user groups, to control access to
ObjectServer objects.

Tivoli Netcool/OMNIbus provides a set of default user accounts. The default users
are described in the following table.

Table 19. Default users

User name Description

root This user is created with an empty string as a password by
default. You can reset the password by using
Netcool/OMNIbus Administrator , or the ALTER USER
ObjectServer SQL command.

nobody This user is disabled and cannot be used to access the
ObjectServer. Ownership of each alert in the alerts.status
table is assigned to a user when the row is inserted. By
default, probes assign rows to the nobody user.

Related concepts:
“Configuring groups” on page 81
Use groups to organize Tivoli Netcool/OMNIbus users into units with common
functional goals. All members of a group have the permissions assigned to the
group roles.
“Configuring roles” on page 76
Roles are collections of permissions that you can assign to users and groups.

Creating and editing users
When setting up users, you must assign them to groups with allocated roles. This
determines the user permissions.

Before you begin

You must have started Netcool/OMNIbus Administrator by running the
nco_config utility. For more information, see “Starting Netcool/OMNIbus
Administrator” on page 64.

About this task

To create or edit a user:

Chapter 4. Using Netcool/OMNIbus Administrator to configure ObjectServers 85

Procedure
1. From the Netcool/OMNIbus Administrator window, select the User menu

button.
2. Click Users. The Users pane opens.
3. To add a user, click Add User in the toolbar. The User Details window opens.
4. To edit a user, select the user to edit and then click Edit User in the toolbar.

The User Details window opens.
5. Define the user as follows:

Username
Type a unique name for the user. If the user is to be externally
authenticated, for example, in a Lightweight Directory Access Protocol
(LDAP) repository or by using Pluggable Authentication Modules
(PAM), the name entered in this field must be identical to the name
stored in the external authentication repository. If you are editing a
user, you cannot change the name.

Tip: When creating ObjectServer objects, their names must begin with
an uppercase or lowercase letter, followed by uppercase or lowercase
letters, numbers, or underscore (_) characters, up to 40 characters in
length. User, group, and role names can be any text string up to 64
characters in length and can include spaces. Names of ObjectServer objects
are case-sensitive.

User ID
Specify a unique numerical identifier for the user. This should be set to
match the UNIX UID where possible. If you are editing a user, you
cannot change the user ID.

The identifier for the root user is 0. The identifier for the nobody user is
65534. Identifiers for other users can be set to any value between 1 and
2147483647.

Full Name
Type the full name of the user.

Create Conversion
Select this check box if you want to create a conversion for the user.
This causes either the user name or the full name of the user to be
displayed in Tivoli® Netcool/OMNIbus event lists. The name shown is
determined by the value of the system.conversion.type property in the
Netcool/OMNIbus Administrator properties file $NCHOME/omnibus/etc/
nco_config.props. This property creates a conversion between the user
ID and the user name or full name of each newly-created user.

6. From the Groups tab, specify the groups to which the user should belong.
Complete the tab as follows:

Unassigned Groups
This list displays the available groups to which you can assign the user.
To assign the user to one or more of these groups, use the arrow keys
to move the groups to the Assigned Groups list.

To move all groups to the Assigned Groups list, click >>. To move a
single group or multiple groups to the Assigned Groups list, select
each group and then click >. You can use the SHIFT key for consecutive
selections, or the CTRL key for non-consecutive selections.

86 IBM Tivoli Netcool/OMNIbus: Administration Guide

Note: If you do not add the user to a group, the user will have no
permissions.

Assigned Groups
This list displays the groups to which the user is assigned. To unassign
groups, use the arrow keys to move the groups to the Unassigned
Groups list.

To move all groups to the Unassigned Groups list, click <<. To move a
single group or multiple groups to the Unassigned Groups list, select
each group and then click <. You can use the SHIFT key for consecutive
selections, or the CTRL key for non-consecutive selections.

Add new group
Click this button if you want to create a new group to which the user
can then be assigned. The Group Details window opens. Complete this
window and save your changes.

When you return to the Groups tab in the User Details window, the
new group will be added to the Unassigned Groups list. You can then
assign the user to this group.

7. From the Restriction Filters tab, specify any restriction filters that you want to
assign to the user. You can use restriction filters to prevent the user from
viewing or modifying certain rows in ObjectServer tables. Complete the tab as
follows:

All Restriction Filters
This list displays the available restriction filters that have been set up.
To assign a restriction filter to the user, select the restriction filter row
and then click Add Restriction Filter. The selected restriction filter is
transferred to the Assigned Restriction Filters list.

If no restriction filters have previously been set up, or if you want to
create a new restriction filter and assign it to the user, click New
Restriction Filter. The Restriction Filter Details window opens.
Complete this window and save your changes.

When you return to the Restriction Filters tab, the new restriction filter
will be added to the All Restriction Filters list. You can then assign
this restriction filter to the user.

Assigned Restriction Filters
This list displays the restriction filters that are assigned to the user. To
unassign a restriction filter, select the restriction filter row and then
click Remove Restriction Filter. The selected restriction filter is
transferred to the All Restriction Filters list.

8. From the Settings tab, specify authentication details for the user and make the
user active on the system.

Password
Type an optional password for the user. Asterisks (*) appear in place of
the password characters that you type.

If the user is to be externally authenticated, the password is stored in
the external repository, so leave this field blank.

Verify If you typed a password in the Password field, retype the password
here.

Chapter 4. Using Netcool/OMNIbus Administrator to configure ObjectServers 87

Change
Click this button to reset the user password. You must then retype it in
the Password and Verify fields.

This button is visible only when editing a user.

External Authentication
Select this check box to externally authenticate the user. Clear this
check box to store the user name and associated password in the
ObjectServer, and to perform ObjectServer authentication.

User Type
This read-only field indicates the type of user. This is set automatically
based on the groups to which the user belongs.

User Enabled
Select this check box to activate the user account and allow login access
to Tivoli Netcool/OMNIbus. New user accounts are activated by
default.

Clear this check box to create the user account without activating it.
You might choose to do this if you want to deny login access to the
user until all the appropriate permissions are assigned to them.

9. Save or cancel your changes as follows:

OK Click this button to save the user details and close the window. New
users are added to the Users pane.

Cancel
Click this button to close the window without saving your changes.

Related tasks:
“Starting Netcool/OMNIbus Administrator” on page 64
You must run the nco_config utility to start Netcool/OMNIbus Administrator.
“Creating and editing groups” on page 82
“Creating and editing restriction filters” on page 90

Deleting users

Before you begin

You must have started Netcool/OMNIbus Administrator by running the
nco_config utility. For more information, see “Starting Netcool/OMNIbus
Administrator” on page 64.

About this task

To delete a user:

Procedure
1. From the Netcool/OMNIbus Administrator window, select the User menu

button.
2. Click Users. The Users pane opens.
3. Select the user that you want to delete and click Delete in the toolbar. The user

is deleted.

88 IBM Tivoli Netcool/OMNIbus: Administration Guide

Related tasks:
“Starting Netcool/OMNIbus Administrator” on page 64
You must run the nco_config utility to start Netcool/OMNIbus Administrator.

Viewing user connections to the ObjectServer
You can view the connection details of any user that is currently logged on to the
ObjectServer.

Before you begin

You must have started Netcool/OMNIbus Administrator by running the
nco_config utility. For more information, see “Starting Netcool/OMNIbus
Administrator” on page 64.

About this task

To view user connections:

Procedure
1. From the Netcool/OMNIbus Administrator window, select the User menu

button.
2. Click Users. The Users pane opens, showing a row for each user that is set up

on the system.
A status indicator icon is shown to the left of the user name. The color of
the icon depicts the connection status of the user as follows:
v A green color indicates that the user is connected.
v A blue color indicates that the user is enabled, but not connected.
v A gray color indicates that the user is not enabled.
From the Users pane, you can view the connection details for any selected user
who is currently logged in to the ObjectServer. For example, if you want to see
how many users are currently connected as root, and their connection details,
you can select the row for the root user. Right-click over the selected row, and
then click See connections from the pop-up menu. The ObjectServer
Connections pane opens. A dynamic quick filter is automatically applied to the
Login Name column so that only applications to which the selected user is

connected are shown. The Quick Filter icon is shown in the Login Name
column header to indicate that a filter has been applied to that name. You can
remove this filter to show all connections for all users by clicking Connections
under the System menu button.

Related tasks:
“Starting Netcool/OMNIbus Administrator” on page 64
You must run the nco_config utility to start Netcool/OMNIbus Administrator.
“Monitoring ObjectServer connections” on page 146
You can view all current connections to the ObjectServer and disconnect one or
more of the connections. You must be assigned the ALTER SYSTEM DROP
CONNECTION permission to disconnect ObjectServer connections.

Chapter 4. Using Netcool/OMNIbus Administrator to configure ObjectServers 89

Configuring restriction filters
You can use restriction filters to control the rows in ObjectServer tables that users
are allowed to view and modify. Restriction filters apply to Tivoli
Netcool/OMNIbus client applications and INSERT, UPDATE, and DELETE
statements. You can assign restrictions filters to individual users or to a collection
of users in a group.

You can assign only one restriction filter per table to a user or a group. However,
multiple restriction filters can apply to a user. For example, a user can be assigned
a single restriction filter and can also be a member of one or more groups, to
which restriction filters are applied. So, if a user is a member of three groups to
which restriction filters are assigned, and the user is also assigned a restriction
filter, four restriction filters apply to that user. If multiple restriction filters apply to
a user, the resulting data is a combination of all applicable restriction filters for the
user or group

If you are using multiple restriction filters, make sure that you set the ObjectServer
RestrictionFiltersAND property appropriately.

You create a restriction filter against the alerts.status table that has the following
condition:
Tally > 100 AND Severity > 4

After this restriction filter is applied to a user, the user can see only events that
occurred more than 100 times and that have a severity that is greater than 4.

Another example usage of restriction filters is to limit the geographical coverage
for events that users can view. You can create a restriction filter against the
alerts.status table that permits London-based users to view only events from
operations centers in London.
Related reference:
“ObjectServer properties and command-line options” on page 3
Use the ObjectServer properties or command-line options to configure settings for
the ObjectServer. To avoid errors, add as many properties as possible to the
properties file rather than using the command-line options. Additional utilities are
provided that you can use to encrypt the property values.

Creating and editing restriction filters

Before you begin

You must have started Netcool/OMNIbus Administrator by running the
nco_config utility. For more information, see “Starting Netcool/OMNIbus
Administrator” on page 64.

Procedure

To create or edit a restriction filter:
1. From the Netcool/OMNIbus Administrator window, select the User menu

button.
2. Click Restriction Filters. The Restriction Filters pane opens.
3. Add or edit a restriction filter as follows:

v To add a restriction filter, click Add Restriction Filter in the toolbar.

90 IBM Tivoli Netcool/OMNIbus: Administration Guide

v To edit a restriction filter, select the restriction filter to edit and then click
Edit Restriction Filter in the toolbar.

4. Complete the Restriction Filter Details window as follows:

Name Type a unique name for the restriction filter.

Tip: When creating ObjectServer objects, their names must begin with
an uppercase or lowercase letter, followed by uppercase or lowercase
letters, numbers, or underscore (_) characters, up to 40 characters in
length. User, group, and role names can be any text string up to 64
characters in length and can include spaces. Names of ObjectServer objects
are case-sensitive.

Database
Select the database for which you are creating the restriction filter.

Table Select the table for which you are creating the restriction filter.

Condition
Type the SQL condition (WHERE statement) for the restriction filter. For
example:
Tally > 100 AND Severity >=4

If this condition is applied, to a user or group, the user or group
members are allowed to see alerts in the event list only if they occur
more than 100 times and have a severity greater than or equal to 4. You
can use the SQL helper buttons to help you create the filter condition,
as described in the following table.

Table 20. Buttons for creating filter conditions

Button Description

Columns Click this button to select a table column name to add to
the command. The column name is substituted for the
corresponding event list row value when the tool runs.

Conversions Click this button to select from a list of available
conversions.

Complete Click this button to bring up a list of keywords that
complete the entered SQL.
Tip: Alternatively, type one or more characters and then
press Ctrl+F1 to obtain a dialog box with a list of keywords
that might match your entry. Select the required keyword
and click OK to complete your entry. If only one keyword
matches your typed characters, the keyword is
automatically completed for you. If you press Ctrl+F1 after
typing a database-related keyword, the dialog box provides
a list of possible ObjectServer databases from which you
can select. If you press Ctrl+F1 after typing a database
name followed by a dot (for example: alerts.), you can
press Ctrl+F1 again to view and select from a list of tables
in the database.

Check SQL Click this button to check the validity of the entered SQL
syntax.

Chapter 4. Using Netcool/OMNIbus Administrator to configure ObjectServers 91

OK Click this button to save the restriction filter details and close the
window. New restriction filters are added to the Restriction Filters
pane.

Cancel
Click this button to close the window without saving your changes.

Related tasks:
“Starting Netcool/OMNIbus Administrator” on page 64
You must run the nco_config utility to start Netcool/OMNIbus Administrator.
“Creating and editing conversions” on page 129
Conversions are associated with the columns in the ObjectServer alerts.status table,
and they map integer values for the columns to strings. The conversions that are
configured in the Netcool/OMNIbus Administrator are used in the event list, to
translate integer values into strings, for readability.

Deleting restriction filters
You cannot delete restriction filters that are currently assigned to a user or group.

Before you begin

You must have started Netcool/OMNIbus Administrator by running the
nco_config utility. For more information, see “Starting Netcool/OMNIbus
Administrator” on page 64.

About this task

To delete a restriction filter:

Procedure
1. From the Netcool/OMNIbus Administrator window, select the User menu

button.
2. Click Restriction Filters. The Restriction Filters pane opens.
3. Select the restriction filter that you want to delete and click Delete in the

toolbar. The restriction filter is deleted.
Related tasks:
“Starting Netcool/OMNIbus Administrator” on page 64
You must run the nco_config utility to start Netcool/OMNIbus Administrator.

Configuring menus, tools, and prompts
You can configure menus, tools, and prompts for the Tivoli Netcool/OMNIbus
desktop (event list and Conductor).

About this task

Each menu consists of a menu name and a list of menu items. Menu items are
tools, separators, and submenus. Submenus are used within menus to group two
or more menu items together.

Tools allow you to control alert management functions within Tivoli
Netcool/OMNIbus. Each tool has an associated SQL statement (called an internal
effect), an executable (called an external effect), or both. You can associate tools with
a class or classes of alert, and can group tools in tools menus.

92 IBM Tivoli Netcool/OMNIbus: Administration Guide

A tool can include a prompt window or a pop-up menu for the user to enter
information.

Customizing menus
Use Netcool/OMNIbus Administrator to customize the Tivoli Netcool/OMNIbus
desktop menus for the event list and Conductor.

About this task

You can customize a menu in any of the following ways:
v Add tools, submenus, and separators to a menu
v Edit menu items
v Change the order of menu items
v Remove tools, submenus, or separators from a menu

After customizing a menu, you can preview its structure to see how it will appear
in the event list or Conductor.

The following table shows the menus you can customize.

Table 21. Customizable event list menus

Menu name in the Netcool/OMNIbus
Administrator - Menus window

Menu name in the Tivoli
Netcool/OMNIbus desktop

AlertsMenu Alerts menu and pop-up menu on the event
list, when an alert is selected

MainEventListMenu Tools menu for the Event List monitor box
window

SubEventListMenu Tools menu for any event list window

ConductorMenu Tools menu on the Conductor

Adding tools, submenus, and separators to a menu
You can add tools, submenus, and separators as menu items in a desktop menu.

About this task

To add a tool, submenu, or separator to a menu:

Procedure
1. From the Netcool/OMNIbus Administrator window, select the Menu menu

button.
2. Click Menus. The Menus pane opens.

Tip: You can double-click the menu to see existing menu items and tools. You
can also click the round symbol (on UNIX) or the plus (+) symbol (on
Windows) that is to the left of a menu.

3. From the tree structure, select the menu to which you want to add a menu
item, and then click Add Item in the toolbar. The Menu Item Details window
opens.

4. Complete this window as follows:

Chapter 4. Using Netcool/OMNIbus Administrator to configure ObjectServers 93

Menu Item Type
If you are adding a menu item, select the type of menu item that you
want to add to the selected menu. If you are editing a tool or submenu,
this field is read-only.

Note: If you are adding a separator, this is the only entry required
within this window.

Tool Select the tool that you want to add. If you are editing a tool, you can
choose to select another tool from this drop-down list.

Note: This field is available for tools only.

If you want to create a new tool that can then be added as a menu item
within the selected menu, click Add Tool. The Tool Details window
opens. Complete this window and save your changes. When you return
to the Menu Item Details window, the tool will be available for
selection within the Tool drop-down list.

If you want to edit the settings of the selected tool, click Edit Tool. The
Tool Details window opens. Complete this window and save your
changes. You return to the Menu Item Details window.

Title If you are adding or editing a tool or a submenu, either accept the
default text (if given) in this field, or type another title. Include an
ampersand (&) in the title if you want to create a mnemonic. This text
will be shown as the menu item name within the menu.

Note: If you are adding a tool, the Title field defaults to the name of
the tool selected. However, if you subsequently select a different tool,
the initial Title field entry will remain unchanged unless you manually
update it.

5. Save or cancel your changes as follows:

OK Click this button to save the menu item details and close the window.
The Menus pane is updated to reflect the changes made. Your changes
are also reflected in the relevant event list or Conductor menu the next
time the desktop is started or the event list is resynchronized with the
ObjectServer.

Cancel
Click this button to close the window without saving your changes.

What to do next

Tip: If you added a submenu to the selected menu, you must now add menu
items to the submenu. Select the submenu within the Menus pane and then follow
step 3 on page 93, step 4 on page 93, and step 5 for each menu item to be added.
Related tasks:
“Creating and editing tools” on page 98
When you create a tool, it is added to the tools database. The tools that appear in
the Tools pane are links to entries in this database.

94 IBM Tivoli Netcool/OMNIbus: Administration Guide

Editing menu items
You can change the title of tools and submenus that are included on the event list
and Conductor menus. You can also replace one tool with another, and can edit the
tool definition.

About this task

To edit a menu item:

Procedure
1. From the Netcool/OMNIbus Administrator window, select the Menu menu

button.
2. Click Menus. The Menus pane opens.
3. From the tree structure, select the tool or submenu that you want to edit, and

then click Edit Item in the toolbar. The Menu Item Details window opens.
4. Edit the menu item as follows:

Menu Item Type
If you are adding a menu item, select the type of menu item that you
want to add to the selected menu. If you are editing a tool or submenu,
this field is read-only.

Note: If you are adding a separator, this is the only entry required
within this window.

Tool Select the tool that you want to add. If you are editing a tool, you can
choose to select another tool from this drop-down list.

Note: This field is available for tools only.

If you want to create a new tool that can then be added as a menu item
within the selected menu, click Add Tool. The Tool Details window
opens. Complete this window and save your changes. When you return
to the Menu Item Details window, the tool will be available for
selection within the Tool drop-down list.

If you want to edit the settings of the selected tool, click Edit Tool. The
Tool Details window opens. Complete this window and save your
changes. You return to the Menu Item Details window.

Title If you are adding or editing a tool or a submenu, either accept the
default text (if given) in this field, or type another title. Include an
ampersand (&) in the title if you want to create a mnemonic. This text
will be shown as the menu item name within the menu.

Note: If you are adding a tool, the Title field defaults to the name of
the tool selected. However, if you subsequently select a different tool,
the initial Title field entry will remain unchanged unless you manually
update it.

5. Save or cancel your changes as follows:

OK Click this button to save the menu item details and close the window.
The Menus pane is updated to reflect the changes made. Your changes
are also reflected in the relevant event list or Conductor menu the next
time the desktop is started or the event list is resynchronized with the
ObjectServer.

Chapter 4. Using Netcool/OMNIbus Administrator to configure ObjectServers 95

Cancel
Click this button to close the window without saving your changes.

Related tasks:
“Creating and editing tools” on page 98
When you create a tool, it is added to the tools database. The tools that appear in
the Tools pane are links to entries in this database.

Changing the order of menu items
You can reorder the items in a menu to enhance user workflows.

About this task

To change the order of desktop menu items:

Procedure
1. From the Netcool/OMNIbus Administrator window, select the Menu menu

button.
2. Click Menus. The Menus pane opens.
3. For each menu item that you want to reposition, select the menu item and

move it to its required position using any of the following methods:
v To move an item to the top of the menu, select Move To Top from the Item

menu, toolbar, or from the pop-up menu obtained when you right-click over
the item.

v To move an item up one position, select Move Up from the Item menu,
toolbar, or from the pop-up menu obtained when you right-click over the
item.

v To move an item down one position, select Move Down from the Item
menu, toolbar, or from the pop-up menu obtained when you right-click over
the item.

v To move an item to the bottom of the menu, select Move To Bottom from the
Item menu, toolbar, or from the pop-up menu obtained when you right-click
over the item.

Repositioned menu items are displayed in the new order the next time the
desktop is started or the event list is resynchronized with the ObjectServer.

Removing tools, submenus, or separators from a menu

About this task

To remove a menu item from the desktop:

Procedure
1. From the Netcool/OMNIbus Administrator window, select the Menu menu

button.
2. Click Menus. The Menus pane opens.
3. Select the menu item that you want to remove. For submenus, you can select a

single item for removal, or you can select the submenu name to delete the
submenu and its contents.

4. From the toolbar, click Delete.

96 IBM Tivoli Netcool/OMNIbus: Administration Guide

Results

The menu item is removed from the desktop the next time the desktop is started
or the event list is resynchronized with the ObjectServer.

Previewing the structure of customized menus
You can preview customized menus to see how they appear in the desktop.

About this task

To preview menus:

Procedure
1. From the Netcool/OMNIbus Administrator window, select the Menu menu

button.
2. Click Menus. The Menus pane opens.
3. From the toolbar, click Show Menu Structure. The preview window opens

with the menus listed horizontally. You can click each menu name to expand its
contents.

Results

Note: The menu names as they appear in Netcool/OMNIbus Administrator differ
from their names on the desktop.

Configuring tools
Tools help operators to manage alerts in the event list. You can create tools that
operators can use to run SQL commands on the ObjectServer, or run external
commands that start a local application, batch file, or script.

A tool can have an associated SQL statement, executable commands, or both. A
tool can also include a prompt window or a pop-up menu for operators to enter or
select information.

You can add tools to event list menus and associate tools with alert classes. Such
tools are available from the menus only when alerts of the associated classes are
selected in the event list.

Note: You can use the nco_elct utility within a tool to open a customized,
transient event list. For example, you can open an event list and apply a filter to
view all critical alerts from a particular ObjectServer. For information about
nco_elct, see the IBM Tivoli Netcool/OMNIbus User's Guide.
Related tasks:
“Adding tools, submenus, and separators to a menu” on page 93
You can add tools, submenus, and separators as menu items in a desktop menu.

Chapter 4. Using Netcool/OMNIbus Administrator to configure ObjectServers 97

Creating and editing tools
When you create a tool, it is added to the tools database. The tools that appear in
the Tools pane are links to entries in this database.

About this task

To create or edit a tool:

Procedure
1. From the Netcool/OMNIbus Administrator window, select the Menu menu

button.
2. Click Tools. The Tools pane opens.
3. To add a tool, click Add Tool in the toolbar. The Tool Details window opens.
4. To edit a tool, select the tool to edit and then click Edit Tool in the toolbar.

The Tool Details window opens.
5. Define the tool as follows:

Name Type a unique name for the tool. If you are editing a tool, you cannot
change the name.

Enabled
Select this check box to activate the tool on the system and make it
available for operators to use. Clear this check box to create the tool
without activating it at the present time, or to make the tool
unavailable.

6. From the SQL tab, enter any SQL commands that should run on the
ObjectServer when the tool is selected for use. Complete the tab as follows:

Enabled
Select this check box to specify that the SQL commands entered must
run when the tool is used.

Execute for each selected row
Select this check box to specify that the SQL commands must run once
for each row in an event list row selection.

SQL Commands
Type the SQL commands that must run when the tool is used.

You can use the SQL helper buttons shown to the right of this field to
construct the SQL commands.

Tip: You can include a prompt in an SQL statement so that when the
tool runs, it calls up a prompt window or a pop-up menu for users to
enter or select information.

7. From the Executable tab, enter any external commands that should run when
the tool is selected for use. Complete the tab as follows:

Enabled
Select this check box to specify that the executable commands entered
must run when the tool is used.

Execute for each selected row
Select this check box to specify that the executable commands must
run once for each row in an event list row selection.

98 IBM Tivoli Netcool/OMNIbus: Administration Guide

Redirect output
Select this check box to specify that output must be echoed through a
read-only window when the commands are run. Clear this check box
to discard the output.

Redirect errors
Select this check box to specify that any error messages must be
echoed through a read-only window when the commands are run.
Clear this check box to discard the error messages.

Executable Commands
Type the commands that must run when this tool is used.

You can use the SQL helper buttons shown to the right of this field to
construct the executable commands.

Tip: You can include a prompt in an external command so that when
the tool runs, it calls up a prompt window or a pop-up menu for
users to enter or select information.

8. From the Journal tab, specify journal settings that should apply when the tool
is selected for use. Complete the tab as follows:

Force Journal Entry
Select this check box to force users to enter journal text before running
the tool. This text is appended to the journal of the selected alert or
alerts when the tool is used.

Execute for each selected row
Select this check box to enter journal information once for each row in
an event list row selection.

Journal Entry
Type the text for the journal entry.

You can use the helper buttons shown to the right of this field to
construct the journal text.

Tip: You can include a prompt in a journal entry so that when the
tool runs, it calls up a prompt window or a pop-up menu for users to
enter or select information.

9. From the Access tab, specify alert classes to which the tool applies, and the
groups of users permitted to use the tool. Complete the tab as follows:

Class Access
Select the alert classes for which the tool can be used. To select all
alert classes, click Tick All to the immediate right of this list. To clear
all your selections, click Tick None to the immediate right of this list.
You can also individually select each check box required.

Group Access
Select the user groups that can use this tool. To select all groups, click
Tick All to the immediate right of this list. To clear all your selections,
click Tick None to the immediate right of this list. You can also
individually select each check box required.

10. From the Platform tab, specify the operating system platforms on which the
tool will be available. Complete the tab as follows:

Available Platforms
Select the check boxes for the operating systems on which the tool will

Chapter 4. Using Netcool/OMNIbus Administrator to configure ObjectServers 99

be available. To select all operating systems, click Tick All to the right
of this list. To clear all your selections, click Tick None to the right of
this list.

Important: You must always specify the operating systems on which
the tool can be used. The tool is only available on platforms that are
selected.

11. From the Description tab, enter an optional text description for this tool. This
can be useful to anyone who is trying to understand how the tool works.

12. Save or cancel your changes as follows:

OK Click this button to save the tool details and close the window. New
tools are added to the Tools pane.

Cancel
Click this button to close the window without saving your changes.

What to do next

The tools shown within the Tools pane can be added to the event list and
Conductor desktop menus to help with alert management.
Related tasks:
“Adding tools, submenus, and separators to a menu” on page 93
You can add tools, submenus, and separators as menu items in a desktop menu.
“Creating and editing prompts” on page 101
You can create prompts to use with tools.
Related reference:
Appendix B, “SQL commands, variable expressions, and helper buttons in tools,
automations, and transient event lists,” on page 399
You can use a number of SQL commands, variable expressions, and helper buttons
to retrieve information from a running event list, the current event, or the
operating system environment. You can use these expressions when creating a tool,
trigger, or SQL procedure, or in parameters passed to a transient event list.

Deleting tools

About this task

To delete a tool:

Procedure
1. From the Netcool/OMNIbus Administrator window, select the Menu menu

button.
2. Click Tools. The Tools pane opens.
3. Select the tool that you want to delete and click Delete in the toolbar. The tool

is deleted.

100 IBM Tivoli Netcool/OMNIbus: Administration Guide

Configuring prompts
An event list tool can include a prompt window or a pop-up menu for users to
enter or select information.

When you create or edit a tool, you can include a prompt in an SQL statement, an
external command, or a journal entry.

You can create the following types of prompts:
v String: This creates a prompt window that accepts one or more characters.
v Integer: This creates a prompt window that accepts an integer value.
v Float: This creates a prompt window that accepts a floating point number, which

can contain a decimal point.
v Time: This creates a prompt window that accepts a time.
v Fixed choice: This creates a pop-up menu that is populated with options that

you specify.
v Lookup: This creates a pop-up menu or drop-down list that is populated by the

values in a specified file.
v Password: This creates a prompt window that accepts one or more characters as

a password.
v Dynamic choice: This creates a pop-up menu or drop-down list that is populated

by the results of a database query.

Creating and editing prompts
You can create prompts to use with tools.

About this task

To create or edit a prompt:

Procedure
1. From the Netcool/OMNIbus Administrator window, select the Menu menu

button.
2. Click Prompts. The Prompts pane opens.
3. To add a prompt, click Add Prompt in the toolbar. The Prompt Details

window opens. The fields within this window vary based on the type of
prompt being created or edited.

4. To edit a prompt, select the tool to edit and then click Edit Prompt in the
toolbar. The Prompt Details window opens. The fields within this window
vary based on the type of prompt being created or edited.

5. To create or edit a string prompt, complete the window as follows:

Name Type a unique name for the prompt. This name must comply with the
ObjectServer naming conventions. If you are editing a prompt, you
cannot change the name.

Prompt
Type the prompt text that should appear when the tool requests
information from the user.

Type Select String to create a prompt window that accepts one or more
characters.

Default
Type a default value for the prompt to display.

Chapter 4. Using Netcool/OMNIbus Administrator to configure ObjectServers 101

6. To create or edit an integer prompt, complete the window as follows:

Name Type a unique name for the prompt. This name must comply with the
ObjectServer naming conventions. If you are editing a prompt, you
cannot change the name.

Prompt
Type the prompt text that should appear when the tool requests
information from the user.

Type Select Integer to create a prompt window that accepts an integer
value.

Default
Type a default value for the prompt to display.

7. To create or edit a float prompt, complete the window as follows:

Name Type a unique name for the prompt. This name must comply with the
ObjectServer naming conventions. If you are editing a prompt, you
cannot change the name.

Prompt
Type the prompt text that should appear when the tool requests
information from the user.

Type Select Float to create a prompt window that accepts a floating point
number, which can contain a decimal point.

Default
Type a default value for the prompt to display.

8. To create or edit a time prompt, complete the window as follows:

Name Type a unique name for the prompt. This name must comply with the
ObjectServer naming conventions. If you are editing a prompt, you
cannot change the name.

Prompt
Type the prompt text that should appear when the tool requests
information from the user.

Type Select Time to create a prompt window that accepts a time. For a time
prompt, the default is to display the current time.

9. To create or edit a fixed choice prompt, complete the window as follows:

Name Type a unique name for the prompt. This name must comply with the
ObjectServer naming conventions. If you are editing a prompt, you
cannot change the name.

Prompt
Type the prompt text that should appear when the tool requests
information from the user.

Type Select Fixed Choice to create a pop-up menu that is populated with
options that you specify.

Options
Use this field to specify menu options to include in the pop-up menu.
To create a new option, click Add option and type a name for the
option in the box that is shown within the Options list. Click outside
the box to complete the entry. You can also edit an existing option by
clicking the entry in the Options list and then clicking Edit option. To
delete an option, click the entry and then click Delete option.

102 IBM Tivoli Netcool/OMNIbus: Administration Guide

10. To create or edit a lookup prompt, complete the window as follows:

Name Type a unique name for the prompt. This name must comply with the
ObjectServer naming conventions. If you are editing a prompt, you
cannot change the name.

Prompt
Type the prompt text that should appear when the tool requests
information from the user.

Type Select Lookup to create a pop-up menu or drop-down list that is
populated by the values in a specified file.

File Type the path and name of the file whose contents must be used to
populate the pop-up menu or drop-down list associated with the
prompt. Alternatively, click Browse to open a file selection window,
navigate to the appropriate location, and select the file.

11. To create or edit a password prompt, complete the window as follows:

Name Type a unique name for the prompt. This name must comply with the
ObjectServer naming conventions. If you are editing a prompt, you
cannot change the name.

Prompt
Type the prompt text that should appear when the tool requests
information from the user.

Type Select Password to create a prompt window that accepts one or more
characters as a password. For a password prompt, the password
characters appear as asterisks when the user completes the prompt.

12. To create or edit a dynamic choice prompt, complete the window as follows:

Name Type a unique name for the prompt. This name must comply with the
ObjectServer naming conventions. If you are editing a prompt, you
cannot change the name.

Prompt
Type the prompt text that should appear when the tool requests
information from the user.

Type Select Dynamic Choice to create a pop-up menu or drop-down list that
is populated by the results of a database query.

Database
Select a database from this drop-down list.

Table Select a table in the selected database, from the drop-down list.

Show Select a column name from the drop-down list. This defines the
column that is used to populate the prompt menu.

Assign
Select a column name from the drop-down list. This defines the
column that is used to return a value to the SQL command, external
command, or journal entry that contains the prompt.

Where Type an SQL search condition. For example: Colname='Severity'.

Order By
Select a column name from the drop-down list. This defines the
column by which items are sorted in the prompt menu. Use the
Ascending and Descending options to specify the sort direction.

13. Save or cancel your changes as follows:

Chapter 4. Using Netcool/OMNIbus Administrator to configure ObjectServers 103

OK Click this button to save the prompt details and close the window.
New prompts are added to the Prompts pane.

Cancel
Click this button to close the window without saving your changes.

What to do next

The prompts shown within the Prompts pane can be added to tools that are set up
to help operators manage alerts in the event list. When such a tool is run, a
prompt window or a pop-up menu is displayed for users to enter or select
information.
Related concepts:
“Naming conventions for ObjectServer objects” on page 156
When issuing SQL commands, you must adhere to the naming conventions
defined for ObjectServers.
Related tasks:
“Creating and editing tools” on page 98
When you create a tool, it is added to the tools database. The tools that appear in
the Tools pane are links to entries in this database.

Deleting prompts

About this task

To delete a prompt:

Procedure
1. From the Netcool/OMNIbus Administrator window, select the Menu menu

button.
2. Click Prompts. The Prompts pane opens.
3. Select the prompt that you want to delete and click Delete in the toolbar. The

prompt is deleted.

Configuring automations
You can use automation to detect changes in the ObjectServer and to run
automated responses to these changes. This enables the ObjectServer to process
alerts without requiring an operator to take action.

About this task

For example, network alerts often include the message Link Down, which indicates
that there is a problem in the network. When the problem is resolved, the
ObjectServer receives another alert including the message Link Up. Using a
correctly-configured automation, the ObjectServer can automatically associate the
two alerts, recognize that the Link Up message indicates that the problem is
resolved, and delete both alerts.

You can also use automation to manage deduplication, which reduces the quantity
of data held in the ObjectServer by eliminating duplicate events.
Netcool/OMNIbus includes a number of standard automations.

Triggers form the basis of the ObjectServer automation subsystem. Triggers
automatically perform a trigger action or fire when the ObjectServer detects an

104 IBM Tivoli Netcool/OMNIbus: Administration Guide

incident associated with a trigger. In a trigger, you can run SQL commands, and
call procedures in response to the change.

Signals and procedures are also part of the automation subsystem. Signals can have
triggers attached to them, so that the ObjectServer can automatically respond when
a signal is raised. Procedures are executable programs that are created to perform
common operations, and you can run them in a trigger, or from the SQL
interactive interface.
Related concepts:
“SQL interactive interface” on page 151
You can use the SQL interactive interface (called nco_sql on UNIX and isql on
Windows) to connect to an ObjectServer, and use SQL commands to interact with,
and configure, the ObjectServer.
Related reference:
“Running procedures” on page 230
After you create a procedure, you must run it using the EXECUTE PROCEDURE
command for the actions in the procedure to occur. You can do this using the SQL
interactive interface (nco_sql) or in a trigger or procedure.
“Standard Tivoli Netcool/OMNIbus automations” on page 256
A set of standard automations is included with Tivoli Netcool/OMNIbus. These
automations are created during database initialization.

Configuring triggers
You can create and edit triggers from the default Netcool/OMNIbus Administrator
windows, or by using an SQL script. You can create an SQL script in an external
text editor. There are three types of triggers: database triggers, signal triggers, and
temporal triggers.

Database triggers fire when a triggering database incident occurs. Signal triggers
fire when a system or user-defined signal is raised. Temporal triggers fire
repeatedly, based on a specified frequency.

Every trigger must belong to a trigger group, which is a collection of related
triggers. You can use a single action to enable or disable all of the triggers in a
trigger group.

Creating and editing trigger groups
When creating a trigger, you are required to assign it to a trigger group. You can
create trigger groups before you create your triggers (as a separate action), or while
you are creating your triggers. This task describes how to create a trigger group in
a separate action.

About this task

To create or edit a trigger group:

Procedure
1. From the Netcool/OMNIbus Administrator window, select the Automation

menu button.
2. Click Trigger Groups. The Trigger Groups pane opens.
3. To add a trigger group, click Add Trigger Group in the toolbar. The Trigger

Group Details window opens.

Chapter 4. Using Netcool/OMNIbus Administrator to configure ObjectServers 105

4. To edit a trigger group, select the trigger group to edit and then click Edit
Trigger Group in the toolbar. The Trigger Group Details window opens.

5. Complete the fields as follows:

Group Name
Type a unique name for the trigger group. If you are editing a trigger
group, you cannot change the name.

Tip: When creating ObjectServer objects, their names must begin with
an uppercase or lowercase letter, followed by uppercase or lowercase
letters, numbers, or underscore (_) characters, up to 40 characters in
length. User, group, and role names can be any text string up to 64
characters in length and can include spaces. Names of ObjectServer objects
are case-sensitive.

Enabled
Select this check box to activate the trigger group.

Clear this check box to create the trigger group without activating it at
the present time, or to make the trigger group unavailable. When a
trigger group is unavailable, all the triggers in the group are also
unavailable for use. You can also make individual triggers available or
unavailable while creating or editing them.

6. Save or cancel your changes as follows:

OK Click this button to save the trigger group details and close the
window. New trigger groups are added to the Trigger Groups pane.

Cancel
Click this button to close the window without saving your changes.

Related tasks:
“Creating and editing database triggers”
A database trigger fires when a triggering database modification occurs. For
example, you can create a trigger to perform an action each time an insert takes
place on the alerts.status table.
“Creating and editing signal triggers” on page 109
Signal triggers fire when a system or user-defined signal is raised. System signals
are raised spontaneously by the ObjectServer when it detects changes to the
system. User-defined signals are explicitly created, raised, and dropped.
“Creating and editing temporal triggers” on page 112
Temporal triggers fire repeatedly based on a specified frequency.

Creating and editing database triggers
A database trigger fires when a triggering database modification occurs. For
example, you can create a trigger to perform an action each time an insert takes
place on the alerts.status table.

About this task

To create or edit a database trigger:

Procedure
1. From the Netcool/OMNIbus Administrator window, select the Automation

menu button.
2. Click Triggers. The Triggers pane opens.

This pane lists all database, signal, and temporal triggers that are set up.

106 IBM Tivoli Netcool/OMNIbus: Administration Guide

Tip: To view only one type of trigger, click Show Database Triggers Only,
Show Temporal Triggers Only, or Show Signal Triggers Only in the toolbar.

3. To add a database trigger, click Add Database Trigger in the toolbar. The
Database Trigger Details window opens.

4. To edit a database trigger, select the database trigger to edit and then click
Edit Trigger in the toolbar. The Database Trigger Details window opens.

5. Define or edit the trigger setup details as follows:

Name Type a unique trigger name. If you are editing a trigger, you cannot
change the name.

Tip: When creating ObjectServer objects, their names must begin with
an uppercase or lowercase letter, followed by uppercase or lowercase
letters, numbers, or underscore (_) characters, up to 40 characters in
length. User, group, and role names can be any text string up to 64
characters in length and can include spaces. Names of ObjectServer
objects are case-sensitive.

Group Select the trigger group to which you want to assign the trigger.

Add new trigger group
Click this button if you want to create a new trigger group to which
the trigger can then be assigned. The Trigger Group Details window
opens. Complete this window and save your changes.

When you return to the Database Trigger Details window, the new
trigger group is shown as the currently-selected trigger group.

6. Complete the Settings tab as follows:

On Select the ObjectServer database and the database table that cause the
trigger to fire.

Priority
Select a priority that determines the order in which the ObjectServer
fires triggers when this database modification causes more than one
trigger to fire. You can select numbers from 1 to 20, with 1 being the
highest priority.

Pre database action/Post database action
Click Pre database action to indicate that the trigger action should run
before the database modification that caused the trigger to fire occurs.
Click Post database action to indicate that the trigger action should
run after the database modification that caused the trigger to fire
occurs.

For example, you can click Pre database action to evaluate a user
name before a row in the alerts.status table is deleted. In the trigger,
you can detect whether the user is allowed to delete from the
alerts.status table and, if not, prevent the database modification from
taking place. If you click Post database action, the database
modification always takes place.

Delete/Insert/Reinsert/Update
Use these options to specify the type of database modification that
should occur.

Row/Statement
Click Row to set the trigger to fire once for each row that matches the
trigger condition. Click Statement to set the trigger to fire once
regardless of the number of matched rows in the table.

Chapter 4. Using Netcool/OMNIbus Administrator to configure ObjectServers 107

Debug
Select this check box to send debugging information to the
ObjectServer message log each time the trigger fires.

Enabled
Select this check box to activate the trigger and make it available for
use. Clear this check box to create the trigger without activating it at
the present time, or to make the trigger unavailable. A disabled trigger
does not fire when the associated database modification occurs.

7. From the When tab, specify an optional WHEN clause that allows you to test
for a particular condition before the action is performed. If the condition is not
met, the action is not performed. You can use the helper buttons shown to the
right of the field to construct the WHEN clause.

8. From the Action tab, enter SQL commands for the trigger.
The body of a trigger contains a set of SQL commands and programming
constructs that manipulate data in the ObjectServer. The body of a trigger is
enclosed within the keywords BEGIN and END. Each statement, except the
last one, must be separated by a semi-colon (;).
You can optionally define (declare) local variables for use within a trigger. A
local variable is a placeholder for values used during the execution of the
trigger. Local variable declarations within a trigger must be separated by
semi-colons (;).
The trigger body has the following syntax:
[DECLARE variable_declaration;...[;]]
BEGIN
trigger_statement_list
END;

You can use the SQL helper buttons shown to the right of the SQL editor
panel to construct the SQL commands.

9. From the Comment tab, enter an optional text comment for the trigger. This
may be useful to anyone who is trying to understand how the trigger works.

10. Save or cancel your changes as follows:

OK Click this button to save the trigger details and close the window.
New triggers are added to the Triggers pane.

Cancel
Click this button to close the window without saving your changes.

108 IBM Tivoli Netcool/OMNIbus: Administration Guide

Related concepts:
“Conditions” on page 192
A condition is a combination of expressions and operators that evaluate to TRUE
or FALSE.
Related tasks:
“Creating and editing trigger groups” on page 105
When creating a trigger, you are required to assign it to a trigger group. You can
create trigger groups before you create your triggers (as a separate action), or while
you are creating your triggers. This task describes how to create a trigger group in
a separate action.
Related reference:
“Creating database triggers (CREATE TRIGGER command)” on page 233
Use the CREATE TRIGGER command to create database triggers that fire when a
modification or attempted modification to an ObjectServer table occurs (or when a
modification or attempted modification to a view affects a base table).
“Best practices for creating triggers” on page 351
When you create or modify triggers, ensure that the triggers are as efficient as
possible, and have the shortest possible execution time.
Appendix B, “SQL commands, variable expressions, and helper buttons in tools,
automations, and transient event lists,” on page 399
You can use a number of SQL commands, variable expressions, and helper buttons
to retrieve information from a running event list, the current event, or the
operating system environment. You can use these expressions when creating a tool,
trigger, or SQL procedure, or in parameters passed to a transient event list.

Creating and editing signal triggers
Signal triggers fire when a system or user-defined signal is raised. System signals
are raised spontaneously by the ObjectServer when it detects changes to the
system. User-defined signals are explicitly created, raised, and dropped.

About this task

For example, you can create a signal trigger to send an email to an operator when
the ObjectServer starts or stops, since a system signal is generated when this
occurs.

To create or edit a signal trigger:

Procedure
1. From the Netcool/OMNIbus Administrator window, select the Automation

menu button.
2. Click Triggers. The Triggers pane opens.

This window lists all database, signal, and temporal triggers that are set up.

Tip: To view only one type of trigger, click Show Database Triggers Only,
Show Temporal Triggers Only, or Show Signal Triggers Only in the toolbar.

3. To add a signal trigger, click Add Signal Trigger in the toolbar. The Signal
Trigger Details window opens.

4. To edit a signal trigger, select the signal trigger to edit and then click Edit
Trigger in the toolbar. The Signal Trigger Details window opens.

5. Define or edit the trigger setup details as follows:

Chapter 4. Using Netcool/OMNIbus Administrator to configure ObjectServers 109

Name Type a unique trigger name. If you are editing a trigger, you cannot
change the name.

Tip: When creating ObjectServer objects, their names must begin with
an uppercase or lowercase letter, followed by uppercase or lowercase
letters, numbers, or underscore (_) characters, up to 40 characters in
length. User, group, and role names can be any text string up to 64
characters in length and can include spaces. Names of ObjectServer
objects are case-sensitive.

Group Select the trigger group to which you want to assign the trigger.

Add New Trigger Group
Click this button if you want to create a new trigger group to which
the trigger can then be assigned. The Trigger Group Details window
opens. Complete this window and save your changes.

When you return to the Signal Trigger Details window, the new
trigger group is shown as the currently-selected trigger group.

6. Complete the Settings tab as follows:

Signal Select the signal that must cause the trigger to fire.

Priority
Select a priority that determines the order in which the ObjectServer
fires triggers when this signal causes more than one trigger to fire.
You can select numbers from 1 to 20, with 1 being the highest priority.

Debug
Select this check box to send debugging information to the
ObjectServer message log each time the trigger fires.

Enabled
Select this check box to activate the trigger and make it available for
use. Clear this check box to create the trigger without activating it at
the present time, or to make the trigger unavailable. A disabled trigger
does not fire when the associated signal is raised.

7. From the When tab, specify an optional WHEN clause that allows you to test
for a particular condition before the action is performed. If the condition is not
met, the action is not performed. You can use the helper buttons shown to the
right of the field to construct the WHEN clause.

8. From the Evaluate tab, optionally build a temporary result set from a single
SELECT statement to be processed during the trigger action that is defined on
the Action tab. Complete the tab as follows:

Bind As
Type the name of the temporary table in which to store the result set.

SQL editor panel
Type the statement using the format:

EVALUATE SELECT_cmd

You can use the SQL helper buttons shown to the right of the field to
construct the statement.

9. From the Action tab, enter SQL commands for the trigger.
The body of a trigger contains a set of SQL commands and programming
constructs that manipulate data in the ObjectServer. The body of a trigger is
enclosed within the keywords BEGIN and END. Each statement, except the
last one, must be separated by a semi-colon (;).

110 IBM Tivoli Netcool/OMNIbus: Administration Guide

You can optionally define (declare) local variables for use within a trigger. A
local variable is a placeholder for values used during the execution of the
trigger. Local variable declarations within a trigger must be separated by
semi-colons (;).
The trigger body has the following syntax:
[DECLARE variable_declaration;...[;]]
BEGIN
trigger_statement_list
END;

You can use the SQL helper buttons shown to the right of the SQL editor
panel to construct the SQL commands.

10. From the Comment tab, enter an optional text comment for the trigger. This
can be useful to anyone who is trying to understand how the trigger works.

11. Save or cancel your changes as follows:

OK Click this button to save the trigger details and close the window.
New triggers are added to the Triggers pane.

Cancel
Click this button to close the window without saving your changes.

Related concepts:
“Configuring signals” on page 126
Signals are occurrences within the ObjectServer that can be detected and acted
upon. Signals are part of the automation subsystem.
“Conditions” on page 192
A condition is a combination of expressions and operators that evaluate to TRUE
or FALSE.
Related tasks:
“Creating and editing trigger groups” on page 105
When creating a trigger, you are required to assign it to a trigger group. You can
create trigger groups before you create your triggers (as a separate action), or while
you are creating your triggers. This task describes how to create a trigger group in
a separate action.
Related reference:
“Creating signal triggers (CREATE TRIGGER command)” on page 238
Use the CREATE TRIGGER command to create a signal trigger that fires in
response to incidents in the ObjectServer, or that fires in response to a user-defined
signal.
“System signals and their attributes” on page 243
When a system signal is raised, attributes that identify the cause of the signal are
set. These attributes are passed as implicit variables into the associated signal
trigger.
“Best practices for creating triggers” on page 351
When you create or modify triggers, ensure that the triggers are as efficient as
possible, and have the shortest possible execution time.
Appendix B, “SQL commands, variable expressions, and helper buttons in tools,
automations, and transient event lists,” on page 399
You can use a number of SQL commands, variable expressions, and helper buttons
to retrieve information from a running event list, the current event, or the
operating system environment. You can use these expressions when creating a tool,
trigger, or SQL procedure, or in parameters passed to a transient event list.

Chapter 4. Using Netcool/OMNIbus Administrator to configure ObjectServers 111

Creating and editing temporal triggers
Temporal triggers fire repeatedly based on a specified frequency.

About this task

For example, you can use a temporal trigger to delete all clear rows (Severity = 0)
from the alerts.status table that have not been modified within a certain period of
time.

To create or edit a temporal trigger:

Procedure
1. From the Netcool/OMNIbus Administrator window, select the Automation

menu button.
2. Click Triggers. The Triggers pane opens.

This pane lists all database, signal, and temporal triggers that are set up.

Tip: To view only one type of trigger, click Show Database Triggers Only,
Show Temporal Triggers Only, or Show Signal Triggers Only in the toolbar.

3. To add a temporal trigger, click Add Temporal Trigger in the toolbar. The
Temporal Trigger Details window opens.

4. To edit a temporal trigger, select the temporal trigger to edit and then click
Edit Trigger in the toolbar. The Temporal Trigger Details window opens.

5. Define or edit the trigger setup details as follows:

Name Type a unique trigger name. If you are editing a trigger, you cannot
change the name.

Tip: When creating ObjectServer objects, their names must begin with
an uppercase or lowercase letter, followed by uppercase or lowercase
letters, numbers, or underscore (_) characters, up to 40 characters in
length. User, group, and role names can be any text string up to 64
characters in length and can include spaces. Names of ObjectServer
objects are case-sensitive.

Group Select the trigger group to which you want to assign the trigger.

Add New Trigger Group
Click this button if you want to create a new trigger group to which
the trigger can then be assigned. The Trigger Group Details window
opens. Complete this window and save your changes.

When you return to the Temporal Trigger Details window, the new
trigger group will be added to the Group list. You can then assign the
trigger to this trigger group.

6. Complete the Settings tab as follows:

Every Define when the trigger must fire. Specify a numeric value and select
hours, minutes, or seconds from the drop-down list.

Priority
Select a priority that determines the order in which the ObjectServer
fires triggers when more than one trigger occurs at this frequency. You
can select numbers from 1 to 20, with 1 being the highest priority.

Debug
Select this check box to send debugging information to the
ObjectServer message log each time the trigger fires.

112 IBM Tivoli Netcool/OMNIbus: Administration Guide

Enabled
Select this check box to activate the trigger and make it available for
use. Clear this check box to create the trigger without activating it at
the present time, or to make the trigger unavailable. A disabled trigger
does not fire.

7. From the When tab, specify an optional WHEN clause that allows you to test
for a particular condition before the action is performed. If the condition is not
met, the action is not performed. You can use the helper buttons shown to the
right of the field to construct the WHEN clause.

8. From the Evaluate tab, optionally build a temporary result set from a single
SELECT statement to be processed during the trigger action that is defined on
the Action tab. Complete the tab as follows:

Bind As
Type the name of the temporary table in which to store the result set.

SQL editor panel
Type the statement using the format:

EVALUATE SELECT_cmd

You can use the SQL helper buttons shown to the right of the SQL
editor panel to construct the statement.

9. From the Action tab, enter SQL commands for the trigger.
The body of a trigger contains a set of SQL commands and programming
constructs that manipulate data in the ObjectServer. The body of a trigger is
enclosed within the keywords BEGIN and END. Each statement, except the
last one, must be separated by a semi-colon (;).
You can optionally define (declare) local variables for use within a trigger. A
local variable is a placeholder for values used during the execution of the
trigger. Local variable declarations within a trigger must be separated by
semi-colons (;).
The trigger body has the following syntax:
[DECLARE variable_declaration;...[;]]
BEGIN
trigger_statement_list
END;

You can use the SQL helper buttons shown to the right of the SQL editor
panel to construct the SQL commands.

10. From the Comment tab, enter an optional text comment for the trigger. This
can be useful to anyone who is trying to understand how the trigger works.

11. Save or cancel your changes as follows:

OK Click this button to save the trigger details and close the window.
New triggers are added to the Triggers pane.

Cancel
Click this button to close the window without saving your changes.

Chapter 4. Using Netcool/OMNIbus Administrator to configure ObjectServers 113

Related concepts:
“Conditions” on page 192
A condition is a combination of expressions and operators that evaluate to TRUE
or FALSE.
Related tasks:
“Creating and editing trigger groups” on page 105
When creating a trigger, you are required to assign it to a trigger group. You can
create trigger groups before you create your triggers (as a separate action), or while
you are creating your triggers. This task describes how to create a trigger group in
a separate action.
Related reference:
“Creating temporal triggers (CREATE TRIGGER command)” on page 236
Use the CREATE TRIGGER command to create temporal triggers that fire at a
specified frequency.
“Best practices for creating triggers” on page 351
When you create or modify triggers, ensure that the triggers are as efficient as
possible, and have the shortest possible execution time.
Appendix B, “SQL commands, variable expressions, and helper buttons in tools,
automations, and transient event lists,” on page 399
You can use a number of SQL commands, variable expressions, and helper buttons
to retrieve information from a running event list, the current event, or the
operating system environment. You can use these expressions when creating a tool,
trigger, or SQL procedure, or in parameters passed to a transient event list.

Using an external editor to create and edit triggers
From Netcool/OMNIbus Administrator, you can configure an external text editor
and then use it to create or edit triggers.

About this task

Configuring an external editor for triggers:

If required, you can create and edit triggers from an external text editor of your
choice. You must first configure which editor you want to use.

About this task

To configure an external editor:

Procedure

1. From Netcool/OMNIbus Administrator, click Tools > Configure Tools. The
Choose Tool window opens.

2. Select Text Editor. The External Program window opens.
3. Complete this windows as follows:

Tool name
This field displays the type of tool that you are configuring.

Executable
Type the full path and name of the executable program for the tool
type. Alternatively, click the button to the right of the field to search for
and select the executable program.

114 IBM Tivoli Netcool/OMNIbus: Administration Guide

Arguments
Type any command-line arguments to run with this executable
program.

Run time environment
Select the runtime environment.

4. Save or cancel your changes as follows:

OK Click this button to save the external program details and close the
window.

Cancel
Click this button to close the window without saving your changes.

Related tasks:
“Creating and editing triggers in an external editor”
You can use an external editor to create or edit a database, signal, or temporal
trigger.

Creating and editing triggers in an external editor:

You can use an external editor to create or edit a database, signal, or temporal
trigger.

Before you begin

You must have configured an external editor to use for creating or editing triggers.

About this task

To create or edit a trigger:

Procedure

1. From the Netcool/OMNIbus Administrator window, select the Automation
menu button.

2. Click Triggers. The Triggers pane opens. This window lists all database, signal,
and temporal triggers that are set up.

Tip: To view only one type of trigger, click Show Database Triggers Only,
Show Temporal Triggers Only, or Show Signal Triggers Only in the toolbar.

3. To create a trigger, make sure that no row is selected in the Triggers pane, and
then click Edit in External Editor in the toolbar. (You can deselect a row by
pressing Ctrl and then clicking the row.) The Select Trigger Type dialog box
opens. Proceed as follows:
a. From the Trigger Template list, select the template for the type of trigger

that you want to create. If you select Database, Signal, or Temporal, the
external editor opens with standard syntax for that trigger type. If you
select <blank>, the external editor opens with no text shown.

b. Complete the syntax for the trigger. If you are using a template, replace the
trigger_name and group_name variables with real values. Additionally, for a
signal trigger, replace the signalName variable with a real value, and for a
database trigger, replace the database_name.table_name variable with a real
value. Add trigger-specific statements, optional clauses, and variable
declarations, as required. Then add the body of the trigger between the
Begin and End keywords. The template includes comments (preceded by --)
for the placement of text.

Chapter 4. Using Netcool/OMNIbus Administrator to configure ObjectServers 115

c. Save your entries. When you save, the trigger is saved to the ObjectServer.
If there are any syntax errors, you are prompted to reload the contents of
the external editor.

d. Close the external editor.
4. To edit a trigger, select the trigger to edit and then click Edit in External Editor

in the toolbar, or right-click and select Edit in External Editor from the pop-up
menu. The external editor opens, with the trigger syntax displayed. Proceed as
follows:
a. Edit the trigger syntax and save your changes. When you save, the trigger

is saved to the ObjectServer. If there are any syntax errors, you are
prompted to reload the contents of the external editor.

b. Close the external editor.

Results

Tip: The SQL that you enter in an external editor is saved to the ObjectServer as a
.ed file. You can check the validity of the syntax in .ed and other .sql files from
the SQL interactive interface (running in GUI mode).
Related tasks:
“Configuring an external editor for triggers” on page 114
If required, you can create and edit triggers from an external text editor of your
choice. You must first configure which editor you want to use.
“Using the SQL interactive interface in GUI mode” on page 148
You can use the SQL interactive interface to configure the ObjectServer by issuing
SQL commands.
Related reference:
“Creating database triggers (CREATE TRIGGER command)” on page 233
Use the CREATE TRIGGER command to create database triggers that fire when a
modification or attempted modification to an ObjectServer table occurs (or when a
modification or attempted modification to a view affects a base table).
“Creating signal triggers (CREATE TRIGGER command)” on page 238
Use the CREATE TRIGGER command to create a signal trigger that fires in
response to incidents in the ObjectServer, or that fires in response to a user-defined
signal.
“Creating temporal triggers (CREATE TRIGGER command)” on page 236
Use the CREATE TRIGGER command to create temporal triggers that fire at a
specified frequency.

Deleting trigger groups
You cannot delete a trigger group that contains triggers.

About this task

To delete a trigger group:

Procedure
1. From the Netcool/OMNIbus Administrator window, select the Automation

menu button.
2. Click Trigger Groups. The Trigger Groups pane opens.
3. Select the trigger group that you want to delete and click Delete in the toolbar.

The trigger group is deleted.

116 IBM Tivoli Netcool/OMNIbus: Administration Guide

Deleting triggers

About this task

To delete a trigger:

Procedure
1. From the Netcool/OMNIbus Administrator window, select the Automation

menu button.
2. Click Triggers. The Triggers pane opens.
3. Select the trigger that you want to delete and click Delete in the toolbar. The

trigger is deleted.

Configuring procedures
A procedure is an executable SQL object that can be called to perform common
operations.

The types of procedures are as follows:
v SQL procedures, which manipulate data in an ObjectServer database
v External procedures, which run an executable file on a local or remote system

Tip: You can create and edit procedures from the default Netcool/OMNIbus
Administrator windows, or from an external text editor of your choice.

Creating and editing SQL procedures
SQL procedures have the following major components: parameters, local variable
declarations, and the procedure body.

About this task

Parameters are values that are passed into or out of a procedure. You declare
parameters when you create a procedure, and you specify what values are passed
as parameters when you run the procedure.

Local variable declarations are declared before the procedure body, and can be
used to define values that are used when the procedure runs.

To create or edit an SQL procedure:

Procedure
1. From the Netcool/OMNIbus Administrator window, select the Automation

menu button.
2. Click Procedures. The Procedures pane opens.
3. To add an SQL procedure, click Add SQL Procedure in the toolbar. The SQL

Procedure Details window opens.
4. To edit an SQL procedure, select the SQL procedure to edit and then click Edit

Procedure in the toolbar. The SQL Procedure Details window opens.
5. Complete this window as follows:

Name Type a unique name for the procedure. If you are editing a procedure,
you cannot change the name.

Tip: When creating ObjectServer objects, their names must begin with
an uppercase or lowercase letter, followed by uppercase or lowercase

Chapter 4. Using Netcool/OMNIbus Administrator to configure ObjectServers 117

letters, numbers, or underscore (_) characters, up to 40 characters in
length. User, group, and role names can be any text string up to 64
characters in length and can include spaces. Names of ObjectServer objects
are case-sensitive.

Parameters
This area displays the parameters that have been created for passing
into and out of the procedure.

You can use the up and down arrows to the right of the list box to
change the order of any selected parameter. You can also click Remove
parameter to the right of the list box to remove any selected parameter
from the list.

To create a parameter, use the In/Out, Name, and Data Type fields, the
Array check box (if necessary), and the Add parameter to the list
button.

In/Out
Select a mode for the parameter being created. Each procedure
parameter has a mode, which can be in, out, or in out.
Depending on the mode you choose for your parameters, you
can use them in different ways.

Name Type a name for the parameter being created. Parameter names
must be unique within the procedure.

Tip: When creating ObjectServer objects, their names must
begin with an uppercase or lowercase letter, followed by
uppercase or lowercase letters, numbers, or underscore (_)
characters, up to 40 characters in length. User, group, and role
names can be any text string up to 64 characters in length and can
include spaces. Names of ObjectServer objects are case-sensitive.

Data Type
Select the type of data that the parameter can pass into or out
of the procedure. The data type can be any valid ObjectServer
data type except VARCHAR or INCR.

Array If you selected the in mode from the In/Out drop-down list,
you can select this check box to pass an array of the selected
data type into the procedure.

Add parameter to the list
After completing the In/Out, Name, and Data Type fields, and
the optional Array check box, click this button to add the
parameter to the parameter list.

Actions
Type the SQL commands for this procedure. The body of a procedure
contains a set of SQL commands and programming constructs that
manipulate data in the ObjectServer. The body of a procedure is
enclosed within the keywords BEGIN and END. Each statement, except
the last one, must be separated by a semi-colon (;).

You can optionally define (declare) local variables for use within a
procedure. A local variable is a placeholder for values used during the
execution of the procedure. Local variable declarations within a
procedure must be separated by semi-colons (;).

118 IBM Tivoli Netcool/OMNIbus: Administration Guide

You can use the SQL helper buttons shown to the right of the SQL
editor panel to construct the SQL commands.

6. Save or cancel your changes as follows:

OK Click this button to save the SQL procedure and close the window.
New SQL procedures are added to the Procedures pane.

Cancel
Click this button to close the window without saving your changes.

What to do next

After you create a procedure in the ObjectServer, you can run it from the SQL
interactive interface (iSQL), or run it in a trigger using the EXECUTE PROCEDURE
command.
Related reference:
“Creating SQL procedures (CREATE PROCEDURE command)” on page 220
Use the CREATE PROCEDURE command to create SQL procedures.
“Running procedures” on page 230
After you create a procedure, you must run it using the EXECUTE PROCEDURE
command for the actions in the procedure to occur. You can do this using the SQL
interactive interface (nco_sql) or in a trigger or procedure.
“Specifying data types for columns” on page 162
Each column value in the ObjectServer has an associated data type. The data type
determines how the ObjectServer processes the data in the column. For example,
the plus operator (+) adds integer values or concatenates string values, but does
not act on Boolean values.
Appendix B, “SQL commands, variable expressions, and helper buttons in tools,
automations, and transient event lists,” on page 399
You can use a number of SQL commands, variable expressions, and helper buttons
to retrieve information from a running event list, the current event, or the
operating system environment. You can use these expressions when creating a tool,
trigger, or SQL procedure, or in parameters passed to a transient event list.

Example: SQL procedure
This example SQL procedure generates a report on the total number of alerts
received (and deduplicated) for a given node.

Within the SQL Procedure Details window, the SQL procedure named node_report
is created with the following entries:

Table 22. Entries for the node_report SQL procedure in the SQL Procedure Details window

Field Entry

Name node_report

Parameters in node_name Char(255)

This read-only entry in the Parameters list is constructed from entries made in the
In/Out, Name, Data Type, and Length fields in the Parameters area. For example:

v In/Out: in

v Name: node_name

v Data Type: Char

v Length: 255

Chapter 4. Using Netcool/OMNIbus Administrator to configure ObjectServers 119

Table 22. Entries for the node_report SQL procedure in the SQL Procedure Details window (continued)

Field Entry

Actions declare
tally_total integer;

begin
set tally_total = 0;
for each row tmprow in alerts.status where tmprow.Node = node_name
begin
set tally_total = tally_total + tmprow.Tally;
end;
write into node_report_file values (’Total tally for node ’, node_name,

’ = ’, tally_total);
end

The SQL command to create the node_report_file ObjectServer file and the full
SQL text of the same node_report procedure is as follows:
create file node_report_file ’/tmp/node_report’;

create procedure node_report(node_name char(255))
declare

tally_total integer;
begin

set tally_total = 0;
for each row tmprow in alerts.status where tmprow.Node = node_name
begin
set tally_total = tally_total + tmprow.Tally;
end;
write into node_report_file values (’Total tally for node ’, node_name,

’ = ’, tally_total);
end;

Creating and editing external procedures
You can create external procedures to run an executable program on a local or
remote system.

About this task

To create or edit an external procedure:

Procedure
1. From the Netcool/OMNIbus Administrator window, select the Automation

menu button.
2. Click Procedures. The Procedures pane opens.
3. To add an external procedure, click Add External Procedure in the toolbar. The

External Procedure Details window opens.
4. To edit an external procedure, select the external procedure to edit and then

click Edit Procedure in the toolbar. The External Procedure Details window
opens.

5. Complete this window as follows:

Name Type a unique name for the procedure. If you are editing a procedure,
you cannot change the name.

Tip: When creating ObjectServer objects, their names must begin with
an uppercase or lowercase letter, followed by uppercase or lowercase
letters, numbers, or underscore (_) characters, up to 40 characters in

120 IBM Tivoli Netcool/OMNIbus: Administration Guide

length. User, group, and role names can be any text string up to 64
characters in length and can include spaces. Names of ObjectServer objects
are case-sensitive.

Parameters
This area displays the parameters that have been created for the
procedure. These parameters can be base type variables, arrays of base
type values, or rows of named tables.

You can use the up and down arrows to the right of the list box to
change the order of any selected parameter. You can also click Remove
parameter to the right of the list box to remove any selected parameter
from the list.

To create a parameter, use the In/Out, Name, and Data Type fields, the
Array check box, and the Add parameter to the list button.

In/Out
The in mode is selected by default. You cannot change this
value because external procedure parameters are always IN
parameters. You can use an IN parameter in expressions to help
calculate a value, but you cannot assign a value to the
parameter.

Name Type a name for the parameter being created. Parameter names
must be unique within the procedure.

Tip: When creating ObjectServer objects, their names must
begin with an uppercase or lowercase letter, followed by
uppercase or lowercase letters, numbers, or underscore (_)
characters, up to 40 characters in length. User, group, and role
names can be any text string up to 64 characters in length and can
include spaces. Names of ObjectServer objects are case-sensitive.

Data Type
Select the type of data that the parameter can pass into the
procedure. The data type can be any valid ObjectServer data
type except VARCHAR or INCR.

Array Select this check box to pass an array of the selected data type
into the procedure.

Add parameter to the list
After completing the In/Out, Name, and Data Type fields, and
the Array check box, click this button to add the parameter to
the parameter list.

Executable
Type the full path for the command to run. You can click Browse to
help locate and select the file.

Arguments
Type any command-line arguments for the command to run.

Host Type the name of the host computer on which to run the procedure.
The logged-in computer name is shown by default.

User ID
Specify the (UNIX) user ID under which to run the executable program.

Chapter 4. Using Netcool/OMNIbus Administrator to configure ObjectServers 121

Group ID
Specify the (UNIX) group ID under which to run the executable
program.

6. Save or cancel your changes as follows:

OK Click this button to save the external procedure and close the window.
New external procedures are added to the Procedures pane.

Cancel
Click this button to close the window without saving your changes.

What to do next

After you create a procedure in the ObjectServer, you can run it from the SQL
interactive interface (iSQL), or run it in a trigger using the EXECUTE PROCEDURE
command.

Note: To run an external procedure, you must have a process control agent
daemon (nco_pad) running on the host where the executable file is stored.
Related concepts:
Chapter 7, “Using process control to manage processes and external procedures,”
on page 275
The Tivoli Netcool/OMNIbus process control system performs two primary tasks.
It manages local and remote processes, and runs external procedures that are
specified in automations.
Related reference:
“Specifying data types for columns” on page 162
Each column value in the ObjectServer has an associated data type. The data type
determines how the ObjectServer processes the data in the column. For example,
the plus operator (+) adds integer values or concatenates string values, but does
not act on Boolean values.
“Running procedures” on page 230
After you create a procedure, you must run it using the EXECUTE PROCEDURE
command for the actions in the procedure to occur. You can do this using the SQL
interactive interface (nco_sql) or in a trigger or procedure.

Example: External procedure
This example external procedure calls a program called nco_mail, which sends
e-mail about unacknowledged critical alerts.

Within the External Procedure Details window, the external procedure named
send_email is created with the following entries:

Table 23. Entries for the send_email external procedure in the External Procedure Details
window

Field Entry

Name send_email

122 IBM Tivoli Netcool/OMNIbus: Administration Guide

Table 23. Entries for the send_email external procedure in the External Procedure Details
window (continued)

Field Entry

Parameters in node Char(255)
in severity Integer
in subject Char(255)
in email Char(255)
in summary Char(255)
in hostname Char(255)

These read-only entries in the Parameters list are constructed from
entries made in the In/Out, Name, Data Type, and Length fields in
the Parameters area. For example, for in node Char(255), the
entries are:

v In/Out: in

v Name: node

v Data Type: Char

v Length: 255

Executable $NCHOME/omnibus/utils/nco_mail

Arguments '\''+node+'\'', severity,'\''+subject+'\'','\''+email+'\'','\
''+summary+'\''

Host localhost

The full SQL text of the same send_email procedure is as follows:
create or replace procedure send_email
(in node character(255), in severity integer, in subject character(255),
in email character(255), in summary character(255), in hostname character(255))
executable ’$NCHOME/omnibus/utils/nco_mail’
host ’localhost’
user 0
group 0
arguments ’\’’ + node + ’\’’, severity, ’\’’ + subject + ’\’’,
’\’’ + email + ’\’’, ’\’’ + summary + ’\’’;

This example also shows how to pass text strings to an executable. Strings must be
enclosed in quotation marks, and the quotation marks must be escaped with
backslashes. All quotation marks in this example are single quotation marks.

Using an external editor to create and edit procedures
From Netcool/OMNIbus Administrator, you can configure an external text editor
and then use it to create or edit procedures.

About this task

Configuring an external editor for procedures:

If required, you can create and edit procedures from an external text editor of your
choice. You must first configure which editor you want to use.

About this task

To configure an external editor:

Chapter 4. Using Netcool/OMNIbus Administrator to configure ObjectServers 123

Procedure

1. From Netcool/OMNIbus Administrator, select Tools > Configure Tools. The
Choose Tool window opens.

2. Select Text Editor. The External Program window opens.
3. Complete this windows as follows:

Tool name
This field displays the type of tool that you are configuring.

Executable
Type the full path and name of the executable program for the tool
type. Alternatively, click the button to the right of the field to search for
and select the executable program.

Arguments
Type any command-line arguments to run with this executable
program.

Run time environment
Select the runtime environment.

4. Save or cancel your changes as follows:

OK Click this button to save the external program details and close the
window.

Cancel
Click this button to close the window without saving your changes.

Related tasks:
“Creating and editing procedures in an external editor”
After you configure an external editor to use for creating or editing procedures,
use the editor to create or edit an SQL or external procedure.

Creating and editing procedures in an external editor:

After you configure an external editor to use for creating or editing procedures,
use the editor to create or edit an SQL or external procedure.

Procedure

To create or edit a procedure select the Automation menu button from the
Netcool/OMNIbus Administrator window and click Procedures. Then, proceed as
follows:
v To create a procedure:

1. In the Procedures pane, ensure that no row is selected. Then, click Edit in
External Editor.

Tip: You can deselect a row by pressing Ctrl and then clicking the row.
2. From the Procedure Template list in the Select Procedure Type dialog box,

select the procedure template. If you select SQL or External, the external
editor opens with standard syntax for that procedure type. If you select
<blank>, the external editor opens with no text shown.

3. Complete the syntax for the procedure. If you are using a template, replace
the procedure_name variable with a real value. Additionally, for an external
procedure, replace the executableName, hostName, userID, and groupID
variables with real values. Add procedure-specific statements and other
declarations, as required. The template might include comments (preceded
by --) for the placement of text.

124 IBM Tivoli Netcool/OMNIbus: Administration Guide

4. Save your entries. If the procedure contains syntax errors, you are prompted
to reload the contents of the external editor.

5. Close the external editor.
v To edit a procedure:

1. Select a procedure and click Edit in External Editor. The external editor
opens, with the procedure syntax displayed.

2. Edit the procedure syntax and save your changes. If the procedure contains
syntax errors, you are prompted to reload the contents of the external editor.

3. Close the external editor.

Results

The SQL that you enter in an external editor is saved to the ObjectServer as a .ed
file.

What to do next

You can check the validity of the syntax in .ed and other .sql files from the SQL
interactive interface, in GUI mode.
Related tasks:
“Configuring an external editor for procedures” on page 123
If required, you can create and edit procedures from an external text editor of your
choice. You must first configure which editor you want to use.
“Using the SQL interactive interface in GUI mode” on page 148
You can use the SQL interactive interface to configure the ObjectServer by issuing
SQL commands.
Related reference:
“Creating external procedures (CREATE PROCEDURE command)” on page 228
Use the CREATE PROCEDURE command to create external procedures.
“Creating SQL procedures (CREATE PROCEDURE command)” on page 220
Use the CREATE PROCEDURE command to create SQL procedures.

Deleting procedures
You cannot delete a procedure if it is being used in a trigger.

About this task

To delete a procedure:

Procedure
1. From the Netcool/OMNIbus Administrator, select the Automation menu

button.
2. Click Procedures. The Procedures pane opens.
3. Select the procedure that you want to delete and click Delete in the toolbar.

The procedure is deleted.

Chapter 4. Using Netcool/OMNIbus Administrator to configure ObjectServers 125

Configuring signals
Signals are occurrences within the ObjectServer that can be detected and acted
upon. Signals are part of the automation subsystem.

The types of signals are as follows:
v System signals
v User-defined signals

An ObjectServer automatically raises system signals when certain changes in the
system occur; for example, during system startup or a connection failure. You
cannot create or modify these signals. You can attach triggers to system signals to
create automatic responses to incidents in the ObjectServer.

User-defined signals are defined by you. You can use Netcool/OMNIbus
Administrator to create your own user-defined signals.
Related tasks:
“Creating and editing signal triggers” on page 109
Signal triggers fire when a system or user-defined signal is raised. System signals
are raised spontaneously by the ObjectServer when it detects changes to the
system. User-defined signals are explicitly created, raised, and dropped.

Creating and editing user-defined signals
Unlike system signals, which are predefined and cannot be configured,
user-defined signals must be explicitly created or deleted.

About this task

To create or edit a user-defined signal:

Procedure
1. From the Netcool/OMNIbus Administrator window, select the Automation

menu button.
2. Click User Defined Signals. The User Defined Signals pane opens.
3. To add a user-defined signal, click Add User Defined Signal in the toolbar.

The User Defined Signal Details window opens.
4. To edit a user-defined signal, select the user-defined signal to edit and then

click Edit User Defined Signal in the toolbar. The User Defined Signal Details
window opens.

5. Complete this window as follows:

Signal Name
Type a unique name for the signal. If you are editing a signal, you
cannot change the name.

Tip: When creating ObjectServer objects, their names must begin with
an uppercase or lowercase letter, followed by uppercase or lowercase
letters, numbers, or underscore (_) characters, up to 40 characters in
length. User, group, and role names can be any text string up to 64
characters in length and can include spaces. Names of ObjectServer objects
are case-sensitive.

Comment
Type a text comment for the signal. For example, you can add a
comment to state which trigger fires when this signal is raised.

126 IBM Tivoli Netcool/OMNIbus: Administration Guide

Parameters
This area displays the parameters that comprise the user-defined signal.

The order in which the parameters appear must match the order that
they appear in the RAISE SIGNAL command for the trigger. You can
use the up and down arrows to the right of the list box to change the
order of any selected parameter. You can also click Remove parameter
to the right of the list box to remove any selected parameter from the
list.

To create a parameter, use the Name and Data Type fields, and the
Add parameter to the list button.

Name Type a name for the parameter being created. Parameter names must be
unique within the signal.

Data Type
Select the type of data the parameter can pass into the signal. The data
type can be any valid ObjectServer data type except VARCHAR or
INCR.

Data Length
For Char data types only, type the parameter length.

Add parameter to the list
After completing the Name, Data Type, and, where necessary, Data
Length fields, click this button to add the parameter to the parameter
list.

6. Save or cancel your changes as follows:

OK Click this button to save the user-defined signal and close the window.
New user-defined signals are added to the User Defined Signals pane.

Cancel
Click this button to close the window without saving your changes.

Results

Example: User-defined signal and trigger
This example shows a user-defined signal called illegal_delete, and the
DETECT_AN_ILLEGAL_DELETE database trigger in which it is used. The database
trigger uses the signal to trap deletes that occur outside of standard office hours.

Within the User Defined Signal Details window, the user-defined signal called
illegal_delete is created with the following entries:

Table 24. Entries for the illegal_delete user-defined signal in the User Defined Signal Details
window

Field Entry

Signal Name illegal_delete

Comment To be used with the DETECT_AN_ILLEGAL_DELETE trigger.

Chapter 4. Using Netcool/OMNIbus Administrator to configure ObjectServers 127

Table 24. Entries for the illegal_delete user-defined signal in the User Defined Signal Details
window (continued)

Field Entry

Parameters user_name Char(20)
row_summary Char(20)

These read-only entries in the Parameters list are constructed from
entries made in the Name, Data Type, and Data Length fields in
the Parameters area. For example, for user_name Char(20), the
entries are:

v Name: user_name

v Data Type: Char

v Data Length: 20

In the following SQL text for the DETECT_AN_ILLEGAL_DELETE pre-insert database
trigger, the raise signal command is shown in bold.
create trigger DETECT_AN_ILLEGAL_DELETE
group default_triggers
priority 1
before delete on alerts.status
for each row
begin

if(((hourofday() > 17) and (minuteofhour() > 30)) or (hourofday() < 9)) then
raise signal ILLEGAL_DELETE %user.user_name, old.Summary;

cancel;
end if;

end;

This trigger raises the illegal_delete user-defined signal. Normally, the raised
signal would then be detected and acted upon, for example, by another trigger.

Deleting user-defined signals
You cannot delete a user-defined signal if it is being used by a signal trigger.

About this task

To delete a user-defined signal:

Procedure
1. From the Netcool/OMNIbus Administrator window, select the Automation

menu button.
2. Click User Defined Signals. The User Defined Signals pane opens.
3. Select the user-defined signal that you want to delete and click Delete in the

toolbar. The user-defined signal is deleted.

128 IBM Tivoli Netcool/OMNIbus: Administration Guide

Configuring the visual appearance of the event list
Conversions, colors, column visuals, and classes determine how alert information
is displayed in the event list.

About this task

Creating and editing conversions
Conversions are associated with the columns in the ObjectServer alerts.status table,
and they map integer values for the columns to strings. The conversions that are
configured in the Netcool/OMNIbus Administrator are used in the event list, to
translate integer values into strings, for readability.

About this task

For example, default conversions exist for event severities. If an event has a
severity of 4, the text Major is displayed for the event severity in the event list.

To create or edit a conversion:

Procedure
1. From the Netcool/OMNIbus Administrator window, select the Visual menu

button.
2. Click Conversions. The Conversions pane opens.

To see the existing conversions for a column, double-click the column name.
You can also click the round symbol (on UNIX) or the plus (+) symbol (on
Windows) that is shown to the left of the column name.

3. To add a conversion, click Add Conversion in the toolbar. The Conversion
Details window opens.

4. To edit a conversion, select the conversion to edit and then click Edit
Conversion in the toolbar. The Conversion Details window opens.

5. Complete this window as follows:

Column
Select the name of the column containing the data to be converted.

Value Specify the integer value to be converted.

Conversion
Type the string to display instead of the value.

6. Save or cancel your changes as follows:

OK Click this button to save the conversion and close the window. New
conversions are added to the Conversions pane.

Cancel
Click this button to close the window without saving your changes.

Chapter 4. Using Netcool/OMNIbus Administrator to configure ObjectServers 129

Deleting conversions

About this task

To delete a conversion:

Procedure
1. From the Netcool/OMNIbus Administrator window, select the Visual menu

button.
2. Click Conversions. The Conversions pane opens.
3. Select the conversion that you want to delete and click Delete in the toolbar.

The conversion is deleted.

Creating and editing event severity colors for Windows event
lists

In event lists, different colors are used to depict the different degrees of event
severities. You can view, create, and modify the severity colors used in Windows
event lists. You can select different colors for acknowledged and unacknowledged
alerts.

About this task

To create or edit event severity colors in Windows event lists:

Procedure
1. From the Netcool/OMNIbus Administrator window, select the Visual menu

button.
2. Click Colors. The Colors pane opens.
3. To add a severity color, click Add Color Definition in the toolbar. The Color

Details window opens.
4. To edit a severity color, select the severity color to edit and then click Edit

Color Definition in the toolbar. The Color Details window opens.
5. Complete this window as follows:

Severity
If you are creating a new color, specify the alert severity value.

Conversion
This field displays the conversion for this alert severity (if one exists).
Conversions are used to translate integer values into strings for
readability. For example, the default conversion for a severity of 4 is
Major.

Unacknowledged
This area displays the color for the alert severity when it is
unacknowledged in event lists. The default alert severity colors for
unacknowledged alerts are:
v 0 - Green
v 1 - Violet
v 2 - Blue
v 3 - Yellow
v 4 - Orange
v 5 - Red

130 IBM Tivoli Netcool/OMNIbus: Administration Guide

Click the Show color picker button to select the color for
unacknowledged alerts of that severity. From the resulting Color Picker
dialog box, choose a color using its swatch, HSB, and RGB values, and
then click OK.

Acknowledged
This area displays the color for the alert severity when it is
acknowledged in event lists. The default alert severity colors for
acknowledged alerts are:
v 0 - Dark Green
v 1 - Dark Violet
v 2 - Dark Blue
v 3 - Dark Yellow
v 4 - Dark Orange
v 5 - Dark Red

Click the Show color picker button to select the color for
acknowledged alerts of that severity. From the resulting Color Picker
dialog box, choose a color using its swatch, HSB, and RGB values, and
then click OK.

6. Save or cancel your changes as follows:

OK Click this button to save the color details and close the window. New
severity colors are added to the Colors pane.

Cancel
Click this button to close the window without saving your changes.

Creating and editing column visuals
The visual appearance of event lists is defined by the settings of the column
visuals. For each column in the event list, you can set the title text, default and
maximum widths, and title and data justification.

About this task

To create or edit a column visual:

Procedure
1. From the Netcool/OMNIbus Administrator window, select the Visual menu

button.
2. Click Column Visuals. The Column Visuals pane opens.
3. To add a column visual, click Add Column Visual in the toolbar. The Column

Visual Details window opens.
4. To edit a column visual, select the column visual to edit and then click Edit

Column Visual in the toolbar. The Column Visual Details window opens.
5. Complete this window as follows:

Column
If you are creating a new column visual, select the column for which
you are adding the visual.

Title Type the title that you want to display as the column header in Tivoli
Netcool/OMNIbus event lists.

Default
Specify the default column width (in characters).

Chapter 4. Using Netcool/OMNIbus Administrator to configure ObjectServers 131

Maximum
Specify the maximum column width (in characters).

Title Select the justification or alignment of the column title.

Column
Select the justification or alignment of the information in the column.

6. Save or cancel your changes as follows:

OK Click this button to save the column visual details and close the
window. New column visuals are added to the Column Visuals pane.

Cancel
Click this button to close the window without saving your changes.

Deleting column visuals

About this task

To delete a column visual:

Procedure
1. From the Netcool/OMNIbus Administrator window, select the Visual menu

button.
2. Click Column Visuals. The Column Visuals pane opens.
3. Select the column visual that you want to delete and click Delete in the toolbar.

The column visual is deleted.

Creating and editing classes
Events in the ObjectServer have a class that is assigned by the probe. Each class
can be associated with an event list tool menu that contains useful tools for events
of that class.

About this task

To create or edit a class:

Procedure
1. From the Netcool/OMNIbus Administrator window, select the Visual menu

button.
2. Click Classes. The Classes pane opens.
3. To add a class, click Add Class in the toolbar. The Class Details window opens.
4. To edit a class, select the class to edit and then click Edit Class in the toolbar.

The Class Details window opens.
5. Complete this window as follows:

Identifier
If you are creating a new class, specify the class identifier for the class.
Alerts in the ObjectServer are assigned a class identifier by the probe.

IBM defines class identifiers for particular equipment types. Contact
IBM Support if you want to reserve a range of classes for your
equipment type. A customer-reserved range of 88000 to 89000 is also
available, which all customers are free to use.

132 IBM Tivoli Netcool/OMNIbus: Administration Guide

Name Type a label for the equipment type to be associated with the class
number.

6. Save or cancel your changes as follows:

OK Click this button to save the class details and close the window. New
classes are added to the Classes pane.

Cancel
Click this button to close the window without saving your changes.

Deleting classes

About this task

To delete a class:

Procedure
1. From the Netcool/OMNIbus Administrator window, select the Visual menu

button.
2. Click Classes. The Classes pane opens.
3. Select the class that you want to delete and click Delete in the toolbar. The

class is deleted.

Configuring ObjectServer databases, files, properties, connections,
and channels

You can configure the following ObjectServer system components: ObjectServer
database structures, files, properties, connections, and channels.

About this task

A database is a structured collection of data that is organized for quick access to
required information. A relational database uses tables as logical containers to store
this data in rows and columns.

An ObjectServer file provides a way to log or report information about
ObjectServer events.

ObjectServer properties control the behavior of the ObjectServer.

Connections to the ObjectServer can be viewed and managed.

Channels are used to define the type of event data to broadcast in accelerated
event notifications, and the data recipients.
Related concepts:
Chapter 6, “Configuring accelerated event notification,” on page 265
You can configure Tivoli Netcool/OMNIbus for accelerated event notification of
events that could present a risk to the system. The Accelerated Event Notification
(AEN) system provides a means of accelerating high-priority events to help ensure
that systems can continue to run without interruption.

Chapter 4. Using Netcool/OMNIbus Administrator to configure ObjectServers 133

Configuring databases
Database configuration involves the creation and maintenance of database tables,
and columns within the tables.

You can create and drop databases, and you can create, drop, and edit (or alter)
database tables and columns.

Restriction: You are not permitted to make changes to system databases. In
Netcool/OMNIbus Administrator, system databases are shown with a lock icon
next to them.
Related concepts:
“System-initialized databases” on page 160
When you initialize an ObjectServer, a number of default databases are created.

Creating databases
You can use Netcool/OMNIbus Administrator to create and manage ObjectServer
databases.

About this task

To create an ObjectServer database:

Procedure
1. From the Netcool/OMNIbus Administrator window, select the System menu

button.
2. Click Databases. The Databases, Tables and Columns pane opens.

You can view and configure table and column information for each non-system
database listed. Use the Data View tab to view data contained in the table. Use
the Column Definitions tab to see information about the table columns, such
as their data types and attributes.
To refresh any displayed information, click the icon for the currently-selected
database or table, or click the Refresh toolbar button.

3. From the toolbar, click Create Database. The Database Details window opens.
4. Complete this window as follows:

Name Type a unique name for the database.

Tip: When creating ObjectServer objects, their names must begin with
an uppercase or lowercase letter, followed by uppercase or lowercase
letters, numbers, or underscore (_) characters, up to 40 characters in
length. User, group, and role names can be any text string up to 64
characters in length and can include spaces. Names of ObjectServer objects
are case-sensitive.

OK Click this button to save the database and close the window. New
databases are added to the ObjectServer and to the Databases, Tables
and Columns pane.

Cancel
Click this button to close the window without saving your changes.

What to do next

You can now add tables to the database.

134 IBM Tivoli Netcool/OMNIbus: Administration Guide

Related tasks:
“Creating tables”
A table has a fixed number of data-typed columns. The name of each column is
unique to the table. A table contains zero or more rows of data in the format
defined by the table's column list. The fully-qualified table name includes the
database name and the table name, separated by a period.

Creating tables
A table has a fixed number of data-typed columns. The name of each column is
unique to the table. A table contains zero or more rows of data in the format
defined by the table's column list. The fully-qualified table name includes the
database name and the table name, separated by a period.

About this task

For example, the status table in the alerts database is identified as alerts.status.

To create a table:

Procedure
1. From the Netcool/OMNIbus Administrator window, select the System menu

button.
2. Click Databases. The Databases, Tables and Columns pane opens.
3. Select the database in which you are creating the table.
4. From the toolbar, click Create Table. The Table Details window opens.
5. Complete this window as follows:

Name Type the table name.

Tip: When creating ObjectServer objects, their names must begin with
an uppercase or lowercase letter, followed by uppercase or lowercase
letters, numbers, or underscore (_) characters, up to 40 characters in
length. User, group, and role names can be any text string up to 64
characters in length and can include spaces. Names of ObjectServer objects
are case-sensitive.

Type Select one of the following table types:
v Persistent: When the ObjectServer restarts, a persistent table is

recreated with all data.
v Virtual: When the ObjectServer restarts, a virtual table is re-created

with the same table description, but without any data.

Table area
This area lists details for all columns in the table. You can use the up
and down arrows to the right to change the order of a selected column
in the table.

Add column
Click this button if you want to add a new column to the table. The
Column Details window opens. Complete this window and save your
changes.

When you return to the Table Details window, the new column is
added to the list of columns.

Chapter 4. Using Netcool/OMNIbus Administrator to configure ObjectServers 135

Edit column
Click this button if you want to edit the details of a selected column.
The Column Details window opens. Edit the details and save your
changes.

When you return to the Table Details window, the updates to the
column details are reflected in the column list.

Delete column
Click this button if you want to drop a selected column from the table.
No confirmation is required for the deletion.

6. Save or cancel your changes as follows:

OK Click this button to save the table details and close the window. New
tables are added to the Databases, Tables and Columns pane.

Cancel
Click this button to close the window without saving your changes.

Results

Tip: You can use the Data View tab on the Databases, Tables and Columns
window to view table data, and use the Column Definitions tab to view detailed
information about the columns in the table.
Related tasks:
“Adding and editing table columns”
You can add new columns to ObjectServer tables or edit existing columns. The
maximum number of columns in a table is 512, excluding the system-maintained
columns. The maximum row size for a table, which is the sum of the length of the
columns in the row, is 64 KB. You cannot add PRIMARY KEY columns to existing
tables.

Adding and editing table columns
You can add new columns to ObjectServer tables or edit existing columns. The
maximum number of columns in a table is 512, excluding the system-maintained
columns. The maximum row size for a table, which is the sum of the length of the
columns in the row, is 64 KB. You cannot add PRIMARY KEY columns to existing
tables.

Procedure

To add or edit a table column:
1. From the Netcool/OMNIbus Administrator window, select the System menu

button.
2. Click Databases. The Databases, Tables and Columns pane opens.
3. In the Databases, Tables and Columns pane, select the table in which you are

adding or editing the column. Then, click the Column Definitions tab.
4. Add or edit a column:

v To add a column, click Add Column in the toolbar.
v To edit a column, select the column to edit and then click Edit Column in

the toolbar.

The Column Details window opens, in which you specify the details of the
column.

5. Complete this window as follows:

136 IBM Tivoli Netcool/OMNIbus: Administration Guide

Column Name
Type the column name. If you are editing the column, you cannot
change the name.

Tip: When creating ObjectServer objects, their names must begin with
an uppercase or lowercase letter, followed by uppercase or lowercase
letters, numbers, or underscore (_) characters, up to 40 characters in
length. User, group, and role names can be any text string up to 64
characters in length and can include spaces. Names of ObjectServer objects
are case-sensitive.

Data Type
Select a data type for the column. The data type determines how the
ObjectServer processes the data in the column. If you are editing the
column, you cannot change the data type. You can select from the
following data types:
v Integer: 32-bit signed integer
v UTC: Time, stored as the number of seconds since midnight January 1,

1970
v VarChar: Variable size character string, up to 8192 Bytes in length
v Incr: 32-bit unsigned auto-incrementing integer that can only be

updated by the system
v Char: Fixed size character string, up to 8192 Bytes in length
v Unsigned: 32-bit unsigned integer
v Boolean: TRUE or FALSE
v Real: 64-bit signed floating point number
v Integer64: 64-bit signed integer
v Unsigned64: 64-bit unsigned integer

Length
This field is available only when you select VarChar or Char from the
Data Type list. Specify the column length.

Primary Key
Select this check box to indicate that the column is a primary key. The
primary key column or columns uniquely identify each row. A primary
key column must have a default value.

No Modify
Select this check box to indicate that users cannot modify data in this
column.

No Default
Select this check box to indicate that a value must be specified for this
column in any INSERT command.

6. Save or cancel your changes as follows:

Apply If you want to add multiple columns without exiting the Column
Details window, click this button to save the column details after
adding each set of entries.

OK After entering the values for the last column that you want to add at
the present time, click this button to save the column details and close
the window. New columns are added to the Databases, Tables and
Columns pane.

Chapter 4. Using Netcool/OMNIbus Administrator to configure ObjectServers 137

Cancel
Click this button to close the window without saving your changes.

What to do next

You can use the Data View tab on the Databases, Tables and Columns window to
view the table data.

Indexing table columns
Use indexes to improve the performance of the ObjectServer databases. The use of
well-designed indexes can reduce or eliminate the need for full table scans during
the execution of SQL queries, and result in faster data retrieval. To determine the
effectiveness of an index, check the index selectivity.

Before you begin

Make sure that you are familiar with how indexes work by reading the indexing
guidelines. Remember that, although there is no limit to the number of indexes
that you can create on a table, you must use indexes sparingly

About this task

The index selectivity is a rating that determines the effectiveness of an index. The
selectivity rating of an index is determined by the ratio of the number of distinct
values in the table to the number of rows in the table.

Possible ratings are as follows:
v High: Values in the table are at least 90% unique. This represents the ideal

selectivity rating.
v Medium: Values are between 50% and 89% unique.
v Low: Values are between 10% and 49% unique.
v Unknown: Values are less than 9% unique.

The selectivity rating of an index is high if few rows contain the same value, and
low if multiple rows contain the same value. When deciding which table columns
to index, also consider the type of SQL queries that are being run on the table.

In the case of large tables, adding and deleting indexes, and viewing the selectivity
of indexes can be memory-intensive.
Related tasks:
“Starting Netcool/OMNIbus Administrator” on page 64
You must run the nco_config utility to start Netcool/OMNIbus Administrator.
Related reference:
“Indexing guidelines” on page 348
Indexing can affect the performance of your SQL queries. Without indexing, a full
database table scan is typically performed when an SQL query runs. Use indexing
to limit the number of rows that are examined.

138 IBM Tivoli Netcool/OMNIbus: Administration Guide

How to use selectivity as a guideline for indexing table columns:

The index selectivity is not the only criterion for deciding whether a table column
makes an effective index. Also consider the types of queries that you want to run
against the index. Use these examples to help you decide which table columns to
index.

The following examples show where an index can have an initial high or low
selectivity rating, but also show how the choice of whether to create an index is
affected by the type of query being used to access the table.

Example 1

The following example would return a high selectivity rating: A table with 30000
rows, with column (A) containing values of between 1 and 15000, where none of
the values occur more than twice.

Note how the usage of queries against the index can determine the effectiveness of
the index.

For example, if the following WHERE clause is used in a query to access the rows
of the table, the result is a high selectivity rating and the query makes good use of
the index:
where A = 5 or A = 10

However, if the following WHERE clause is used to access the rows in the table,
only two rows from the 30000 rows would be ignored by the index. This would
therefore be a poor candidate for an index.
where A > 1

Example 2

The following example would return a low selectivity rating: A table with 20000
rows, with column (B) containing values of either 1 or 2.

Note how the usage of queries against the index can determine the effectiveness of
the index.

For example, if the following WHERE clause is used to access the rows in the
table, all values are matched, and so there is no benefit from creating an index.
where B = 1 or B = 2

However, if the following WHERE clause is used to access the rows in the table,
the effectiveness of the index depends on the distribution of the value 1:
where B = 1

The factors for determining the effectiveness of an index are as follows:
v If there are few instances of the value 1, an index would reduce the number of

rows being processed, and would therefore be a good candidate for an index.
v If the majority of rows contain the value 1, an indexed column would not

provide any benefit.
v If there is an equal distribution of the two values, an index would reduce the

number of rows being processed by 50%. The table would therefore be a good
candidate for an index.

Chapter 4. Using Netcool/OMNIbus Administrator to configure ObjectServers 139

Creating indexes:

Use Netcool/OMNIbus Administrator to create indexes on columns of database
tables.

About this task

Tivoli Netcool/OMNIbus supports hash and tree index structures. The hash index
supports equality comparisons in SQL queries. The tree index is an ordered index
that stores column values in a sorted structure, and allows a wider range of
comparisons, including equality, in SQL queries. Consequently, a tree index can be
used in range queries and in queries with an ORDER BY clause.

Index names must begin with an alphabetic character in uppercase or lowercase.
The name of the index must be unique within the ObjectServer. Use a naming
convention for indexes for ease of identification and uniqueness.

Restriction: You cannot create indexes on the columns in system tables. These
tables contain metadata about ObjectServer objects and are stored in the catalog
database. Also, you cannot create a hash index on a single primary key field. You
cannot create a tree index on columns with Boolean data values.

Procedure

To create column indexes:
1. From the Netcool/OMNIbus Administrator window, select the System menu

button.
2. Click Databases. The Databases, Tables and Columns pane opens.
3. Select the table containing the column that you want to index and then click

the Data View tab. All currently indexed columns are denoted by an icon.
4. To index the column, right-click the column and click Indexes > Add Column

Index. A window is displayed showing the selectivity rating of the column
index.

5. To create the index, click Yes.
6. Type a name for the index, specify the type of index, a hash index or a tree

index, and click OK. The index is created. On the Data View tab, the newly
indexed column is denoted by the index icon.

Results

You can verify that the table is indexed by checking the catalog.indexes table,
either from the Netcool/OMNIbus Administrator interface, or by using the
SELECT command. SQL queries against the indexed column should now execute
faster and result in faster data retrieval.

140 IBM Tivoli Netcool/OMNIbus: Administration Guide

Related concepts:
“SQL interactive interface” on page 151
You can use the SQL interactive interface (called nco_sql on UNIX and isql on
Windows) to connect to an ObjectServer, and use SQL commands to interact with,
and configure, the ObjectServer.
Related tasks:
“Viewing index details” on page 171
To see what columns are currently indexed, you can examine the contents of the
catalog.indexes table either from the Netcool/OMNIbus Administrator interface, or
by using the SELECT command.
“Using the SQL interactive interface in GUI mode” on page 148
You can use the SQL interactive interface to configure the ObjectServer by issuing
SQL commands.

Viewing the selectivity of indexes:

You can check the selectivity of an index on an indexed table or a table that is yet
to be indexed.

Procedure

To view the selectivity of column indexes:
1. From the Netcool/OMNIbus Administrator window, select the System menu

button.
2. Click Databases. The Databases, Tables and Columns pane opens.
3. Select the table containing the required column and then click the Data View

tab.
4. Right-click the column and click Indexes > Column Selectivity. A window is

displayed showing the selectivity rating.

Note: All currently indexed columns are denoted by an icon on the Data View
tab or can be viewed in the catalog.indexes table.

Deleting indexes:

If an index is no longer required, delete it from the catalog.indexes table.

Procedure

To delete column indexes:
1. From the Netcool/OMNIbus Administrator window, select the System menu

button.
2. Click Databases. The Databases, Tables and Columns pane opens.
3. To open the catalog.indexes table and view all indexes, click indexes and then

click the Data View tab. Each index is represented as a row in the table. You
can use the IndexName column to identify the required index.

4. Right click the required row and click Indexes > Delete Column Index, then
click Yes to confirm the deletion of the index.

Chapter 4. Using Netcool/OMNIbus Administrator to configure ObjectServers 141

Deleting databases
You are not permitted to drop system databases, which have a lock icon next to
them.

About this task

Attention: When you drop a database that contains table data, the tables are first
emptied and dropped.

To delete a database:

Procedure
1. From the Netcool/OMNIbus Administrator window, select the System menu

button.
2. Click Databases. The Databases, Tables and Columns pane opens.
3. Select the database that you want to delete and click Drop Database in the

toolbar. The database is removed from the ObjectServer.

Deleting tables
You are not permitted to delete tables in system databases.

About this task

To delete a table:

Procedure
1. From the Netcool/OMNIbus Administrator window, select the System menu

button.
2. Click Databases. The Databases, Tables and Columns pane opens.
3. Select the database containing the table to drop.
4. Select the table that you want to delete and click Drop Table in the toolbar. All

data is removed from the table and the table is then removed from the
database.

Deleting table columns
You are not permitted to delete primary key columns or columns in system tables.

About this task

Attention: Dropping a column requires a considerable amount of preliminary
action to identify and remove any external dependencies on the column. This
involves searching for any references to the column within triggers, procedures,
views, restriction filters, probes rules files, and gateway mapping files. Be aware
also that if you drop a column that has triggers, procedures, views, or restriction
filters that depend on it, these dependent objects are also deleted, with a warning
being written to the ObjectServer log file.

To delete a table column after confirming that no external dependencies exist:

Procedure
1. From the Netcool/OMNIbus Administrator window, select the System menu

button.
2. Click Databases. The Databases, Tables and Columns pane opens.

142 IBM Tivoli Netcool/OMNIbus: Administration Guide

3. Select the table containing the column to delete.
4. Click the Column Definitions tab.
5. Select the column that you want to delete and click Drop Column in the

toolbar. The column is removed from the table.
Related reference:
“Dropping a column” on page 166
To drop columns from an existing table, use the DROP COLUMN setting with the
ALTER TABLE command.

Viewing and changing ObjectServer properties
ObjectServer properties help to determine the behavior of the ObjectServer. You
can view and change ObjectServer properties using Netcool/OMNIbus
Administrator. You cannot add ObjectServer properties; you can only edit existing
ones.

About this task

The default location of the ObjectServer properties file is $NCHOME/omnibus/etc/
servername.props. The ObjectServer reads the properties file when it starts.

Important: It is essential that you are familiar with the ObjectServer properties
before modifying them. Incorrect configuration can negatively impact system
performance and functionality.

To change the value of an ObjectServer property:

Procedure
1. From the Netcool/OMNIbus Administrator window, select the System menu

button.
2. Click Properties. The ObjectServer Properties pane opens.

Tip: View-only properties have the text false in the Editable column.
3. To edit a property, select the column to edit and then click Edit Property in the

toolbar. The Property Details window opens.
4. Complete this window as follows:

Name The unique name allocated to the ObjectServer property is shown here.
You cannot change this value.

Description
A description of the ObjectServer property is shown here. You cannot
change this value.

Value Edit the property value as required.
5. Save or cancel your changes as follows:

OK Click this button to save the property details and close the window.
The updated value is reflected in the ObjectServer Properties pane.

Cancel
Click this button to close the window without saving your changes.

Results

Tip: Changes to some ObjectServer properties do not take effect until you restart
the ObjectServer. These properties have the text false in the Immediate column.

Chapter 4. Using Netcool/OMNIbus Administrator to configure ObjectServers 143

Related reference:
“ObjectServer properties and command-line options” on page 3
Use the ObjectServer properties or command-line options to configure settings for
the ObjectServer. To avoid errors, add as many properties as possible to the
properties file rather than using the command-line options. Additional utilities are
provided that you can use to encrypt the property values.

Configuring ObjectServer files
ObjectServer files are user-defined storage objects that hold log or report data.

An ObjectServer file is a logical file that has a corresponding file or set of files on
the physical file system. You can define ObjectServer file sizes and the number of
physical files in a set.

ObjectServer file creation sequence
Each file in a file set is indicated by a number appended to the file name (or file
extension, if there is one).

For example, if you create a file named logfile in the /log directory and specify
that its maximum size is 20 KB and the maximum number of files in the set is 3,
the following sequence of files is created and used:
1. When you click OK to create the file, the ObjectServer creates an empty file

named logfile1 in the /log directory.
2. The ObjectServer writes data to logfile1 until it exceeds the maximum file size

(20 KB).
3. The ObjectServer renames logfile1 to logfile2. It then creates a new logfile1

and writes to it until it exceeds the maximum size.
4. The ObjectServer renames logfile2 to logfile3 and renames logfile1 to

logfile2. It then creates a new logfile1 and writes to it until it exceeds the
maximum size.

5. The ObjectServer deletes the oldest file (logfile3). It then renames logfile2 to
logfile3 and renames logfile1 to logfile2. It creates a new file named
logfile1 and writes to it until it exceeds the maximum size.

This sequence repeats until the file is altered or dropped.

Creating and editing ObjectServer files
An ObjectServer file provides a way to log or report information about
ObjectServer events.

About this task

For example, you can create a trigger that writes an entry in an ObjectServer file
each time a user makes a connection to an ObjectServer.

To create or edit an ObjectServer file:

Procedure
1. From the Netcool/OMNIbus Administrator window, select the System menu

button.
2. Click Log Files. The Log Files pane opens.
3. To add a file, click Add Log File in the toolbar. The File Details window opens.

144 IBM Tivoli Netcool/OMNIbus: Administration Guide

4. To edit the file details, select the file to edit and then click Edit Log File in the
toolbar. The File Details window opens.

5. Complete this window as follows:

Name Type a unique name for the ObjectServer file; for example, a name that
provides some meaning about its usage. Note that this is not the file
name as it will be created on the file system; to specify this, use the
Full File Path field. If you are editing a file, you cannot change the
name.

Tip: When creating ObjectServer objects, their names must begin with
an uppercase or lowercase letter, followed by uppercase or lowercase
letters, numbers, or underscore (_) characters, up to 40 characters in
length. User, group, and role names can be any text string up to 64
characters in length and can include spaces. Names of ObjectServer objects
are case-sensitive.

Full File Path
Type the full path and file name of the physical file; for example,
/opt/netcool/omnibus/log/status.log.

Note: A number is automatically appended to the file name on the file
system.

Enabled
Select this check box to activate the ObjectServer file. If not activated,
the file will exist on the file system, but cannot be written to. You can
specify the ObjectServer file information and then activate the file at a
later time.

Unlimited File Size
Select this check box if you want information to be written to a single
file with an unlimited size. If you choose this setting, the Max. Size
and Max. Files fields are not displayed in the window.

When this check box is clear, information can be written to a single file,
or to a pool of files that will each be written to in turn when a specified
maximum size is reached. If you choose this setting, you must specify
associated values in the Max. Size and Max. Files fields.

Truncate
Click this button to clear any information that has been written to the
physical file. This does not delete the file. In situations where there is
more than one physical file in a set, only the file that is currently being
written to on the file system is truncated.

Note: This button is visible only when you are editing file details.

Max. Size
Specify the maximum ObjectServer file size and then select a unit of
measurement. The minimum file size is 1 KB and the maximum file
size is 4 GB.

Note: The operating system may place further restrictions on the
maximum size of a single file.

Max. Files
Specify the maximum number of ObjectServer files to create.

6. Save or cancel your changes as follows:

Chapter 4. Using Netcool/OMNIbus Administrator to configure ObjectServers 145

OK Click this button to save the file details and close the window. New file
details are added to the Log Files pane.

Cancel
Click this button to close the window without saving your changes.

Related concepts:
“ObjectServer file creation sequence” on page 144
Each file in a file set is indicated by a number appended to the file name (or file
extension, if there is one).

Deleting ObjectServer files
You cannot delete a file if it is being used, for example, in a trigger.

About this task

To delete an ObjectServer file:

Procedure
1. From the Netcool/OMNIbus Administrator window, select the System menu

button.
2. Click Log Files. The Log Files pane opens.
3. Select the ObjectServer file that you want to delete and click Delete in the

toolbar. The ObjectServer file is deleted. The ObjectServer no longer writes
information to this file.

Results

When you delete a file, only the ObjectServer file is deleted; physical files created
in the file system are not deleted.

Monitoring ObjectServer connections
You can view all current connections to the ObjectServer and disconnect one or
more of the connections. You must be assigned the ALTER SYSTEM DROP
CONNECTION permission to disconnect ObjectServer connections.

About this task

To view and disconnect connections to the ObjectServer:

Procedure
1. From the Netcool/OMNIbus Administrator window, select the System menu

button.
2. Click Connections. The ObjectServer Connections pane opens, showing a row

of information for each application that is currently connected.
3. Select the rows that you want to disconnect. You can use the Shift key for

consecutive selections, or the Ctrl key for non-consecutive selections.
4. Click Disconnect in the toolbar. You are prompted in turn for confirmation that

you want to disconnect each of the applications that you selected.
5. Click Yes for each application to be disconnected, and click No to cancel a

disconnection.

146 IBM Tivoli Netcool/OMNIbus: Administration Guide

Related tasks:
“Viewing user connections to the ObjectServer” on page 89
You can view the connection details of any user that is currently logged on to the
ObjectServer.

Configuring channels
The Accelerated Event Notification (AEN) system enables you to accelerate
high-priority events to help ensure that systems can continue to run without
interruption. Use channels to define the type of event data to be included in
accelerated event notifications, and the recipients of this event data.
Related concepts:
Chapter 6, “Configuring accelerated event notification,” on page 265
You can configure Tivoli Netcool/OMNIbus for accelerated event notification of
events that could present a risk to the system. The Accelerated Event Notification
(AEN) system provides a means of accelerating high-priority events to help ensure
that systems can continue to run without interruption.
“Configuring channels to broadcast event data” on page 267
When configuring accelerated event notification, you must use channels to define
the type of event data to broadcast in the accelerated event notifications, and the
recipients of this data. You can set up multiple channels with varied event data
and recipients.
Related tasks:
“Creating and editing channels” on page 267
You must create channels on an ObjectServer from which the accelerated events
will be forwarded.
“Copying and pasting channels” on page 270
You can use one channel as a template for another by copying and pasting the
channel definition. This is useful if you want to create channels with slight
variations in their definitions.
“Deleting a channel” on page 271
“Sending messages to channel recipients” on page 271
You can send messages to channel recipients who are currently running the
Accelerated Event Notification client.
“Disconnecting Accelerated Event Notification clients” on page 272
If you need to perform minor maintenance on the ObjectServer, such as
resynchronization, you can remotely disconnect (or sign out) the Accelerated Event
Notification clients that are currently running. As part of the disconnect action, you
can enter a brief message to users with relevant information.
“Shutting down Accelerated Event Notification clients” on page 273
If you need to shut down the ObjectServer, you can remotely shut down the
Accelerated Event Notification clients that are currently running. As part of
shutting down, you can enter a brief message to users with relevant information.

Chapter 4. Using Netcool/OMNIbus Administrator to configure ObjectServers 147

Using the SQL interactive interface in GUI mode
You can use the SQL interactive interface to configure the ObjectServer by issuing
SQL commands.

About this task

Note: Only users that are members of a group granted the ISQL role can access an
ObjectServer by using the SQL interactive interface. Only users that are members
of a group granted the ISQLWrite role can update ObjectServer data by using the
SQL interactive interface.

To open the SQL interactive interface in GUI mode:

Procedure
1. From the Netcool/OMNIbus Administrator window, select the System menu

button.
2. Click SQL. The SQL pane opens.
3. Complete this window as follows:

SQL editor
Use the text field and buttons in this area to issue commands. Type
SQL in the text field, and use a semi-colon to separate multiple
commands. You can use the SQL helper buttons and the additional
buttons to facilitate the creation of SQL commands.

When typing SQL commands within the Tivoli Netcool/OMNIbus SQL
editor panels, you can type one or more characters and then press
Ctrl+F1 to obtain a dialog box with a list of keywords that might match
your entry. Select the required keyword and click OK to complete your
entry. If only one keyword matches your typed characters, the keyword
is automatically completed for you. If you press Ctrl+F1 after typing a
database-related keyword, the dialog box provides a list of possible
ObjectServer databases from which you can select. If you press Ctrl+F1
after typing a database name followed by a dot (for example: alerts.),
you can press Ctrl+F1 again to view and select from a list of tables in
the database.

The following table describes the helper buttons.

148 IBM Tivoli Netcool/OMNIbus: Administration Guide

Table 25. SQL interactive interface buttons

Button Description

Click this button to select an SQL command from the pop-up
menu. Based on the command that you select, complete the
resulting window as follows:

v Select: Select the database and table on which to run the
SELECT command. Then, choose the table columns to select.

v Insert: Select the database and table on which to run the
INSERT command. Then, select the table columns in which to
insert values. For each selected column, enter the value to
insert. For insert statements, you must include the primary
key. Primary keys are indicated with an asterisk (*).

v Update: Select the database and table on which to run the
command. Then, select the table columns to update. For each
selected column, enter the new value. For update statements,
you must exclude the primary key. Primary keys are
indicated with an asterisk (*).
Note: For inserts and updates to the alerts.status table, any
existing conversions appear in the drop-down lists.

v Delete: Select the table to delete.

v Use: Select the database to use.

v Service: Select a service name and a value. Values can be
Good, Marginal, or Bad.

Click this button to select a table column name to add to the
command. The column name is substituted for the
corresponding event list row value when the tool runs. When
prefaced with the @ symbol, the column name is substituted
with the corresponding event list row value during execution.
This can be used in an SQL query or restriction filter, such as:
RemoteNodeAlias = ’@LocalNodeAlias’

Click this button to select from a list of available conversions.
Double-click to add the conversion.

Click this button to clear the entered SQL.

Click this button to bring up a list of keywords that complete
the entered SQL.

Click this button to check the validity of the entered SQL
syntax.

Click this button to locate a file of type .sql or .ed and check
the validity of its syntax. On completion, the results are
displayed. (When you use an external editor to create or edit
triggers and procedures, they are saved as .ed files.)

Click this button to submit the SQL commands.

After you complete the SQL command, click Submit.

History
This drop-down list provides a history of the SQL commands entered.
You can select a previously-issued command from the list. You can also
clear the list of previously-issued commands by right-clicking over the
list and selecting Clear History.

Chapter 4. Using Netcool/OMNIbus Administrator to configure ObjectServers 149

Result View
After issuing the command, a visual representation of the table on
which you performed the SQL command is displayed in this tab.

Console View
A command history is displayed in this tab.

Related concepts:
Chapter 5, “ObjectServer SQL,” on page 151
The ObjectServer provides an SQL interface for defining and manipulating
relational database objects such as tables and views.
Related tasks:
“Creating indexes” on page 140
Use Netcool/OMNIbus Administrator to create indexes on columns of database
tables.
“Creating and editing conversions” on page 129
Conversions are associated with the columns in the ObjectServer alerts.status table,
and they map integer values for the columns to strings. The conversions that are
configured in the Netcool/OMNIbus Administrator are used in the event list, to
translate integer values into strings, for readability.

150 IBM Tivoli Netcool/OMNIbus: Administration Guide

Chapter 5. ObjectServer SQL

The ObjectServer provides an SQL interface for defining and manipulating
relational database objects such as tables and views.

ObjectServer SQL commands include:
v Data Definition Language (DDL) commands to create, alter, and drop database

objects
v Data Manipulation Language (DML) commands to query and manipulate data

in existing database objects
v System commands to alter the configuration of an ObjectServer
v Session control commands to alter settings in client sessions
v Security commands to control user access to database objects

The ObjectServer also provides procedural language commands, which give you
programming constructs for defining actions that take place when specified
incidents occur and conditions that you define are met. You can use procedures
and triggers to form automations, enabling you to process events automatically.

You can use the SQL interactive interface to connect to an ObjectServer and run
ObjectServer SQL commands.

Tip: Many of the tasks performed by running ObjectServer SQL commands from
the SQL interactive interface can also be performed from the Netcool/OMNIbus
Administrator interface.
Related tasks:
“Using the SQL interactive interface in GUI mode” on page 148
You can use the SQL interactive interface to configure the ObjectServer by issuing
SQL commands.

SQL interactive interface
You can use the SQL interactive interface (called nco_sql on UNIX and isql on
Windows) to connect to an ObjectServer, and use SQL commands to interact with,
and configure, the ObjectServer.

While running the SQL interactive interface, you can perform tasks such as
creating a new database table or stopping the ObjectServer.

Note: Only users who are members of a group granted the ISQL role can connect
to an ObjectServer by using the SQL interactive interface. Only users who are
members of a group granted the ISQLWrite role can modify ObjectServer data by
using the SQL interactive interface. These roles are predefined in Tivoli
Netcool/OMNIbus.

© Copyright IBM Corp. 1994, 2013 151

Related concepts:
“Configuring roles” on page 76
Roles are collections of permissions that you can assign to users and groups.
“Configuring groups” on page 81
Use groups to organize Tivoli Netcool/OMNIbus users into units with common
functional goals. All members of a group have the permissions assigned to the
group roles.
“Using roles to assign permissions to users” on page 212
After you create a role, you must assign permissions to the role using the GRANT
command. You can then use the GRANT ROLE command to assign the role to one
or more groups. All users who are group members are automatically assigned the
permissions defined for that role.
Related tasks:
“Creating indexes” on page 140
Use Netcool/OMNIbus Administrator to create indexes on columns of database
tables.

Starting the SQL interactive interface
Before you start the SQL interactive interface, you are required to connect to an
ObjectServer as a specific user.

About this task

To start the SQL interactive interface:

Procedure

Run the nco_sql command on UNIX and isql command on Windows, as follows:

Option Description

UNIX $NCHOME/omnibus/bin/nco_sql -server servername -user username

Windows %NCHOME%\omnibus\bin\isql -S servername -U username

In these commands, servername is the name of the ObjectServer and username is a
valid user name. If you do not specify an ObjectServer name, the default name
NCOMS is used. If you do not specify a user name, the default is the user running
the command. You must enter a valid password for the user, either when
prompted, or by specifying the -password command-line option (-P on Windows).

Note: On Windows, you must specify the ObjectServer name and the user name.

Results

Attention: Be aware that specifying the password on the command line makes
the password visible. If you do not specify a password, you are prompted for one.

A number of command-line options are available for use with these commands.

152 IBM Tivoli Netcool/OMNIbus: Administration Guide

Command-line options for starting the SQL interactive interface
When you use the nco_sql or isql command to start the SQL interactive interface,
you can specify a number of command-line options to modify the configuration.
The SQL interactive interface also has a file input option that you can use to read
SQL commands from a file.

You can run the nco_sql or isql command from the $NCHOME/omnibus/bin
directory.

The command-line options for the SQL interactive interface are described in the
following table.

Table 26. Command-line options for the nco_sql and isql commands

Option Description

-help Displays help information about the command-line options
and exits.

-input input_file

-i input_file on Windows

Specifies the location of a file for SQL input. The SQL
commands in the file are executed on the ObjectServer to
which the SQL interactive interface connects.

Note: When you connect using the -nosecure option, you
must use the -input option to read the file instead of the
standard file input syntax < input_file.

-networktimeout integer

-l logintimeout and -t timeout
on Windows

Specifies a time in seconds after which a login attempt or
connection to the ObjectServer will time out, should a
network failure occur. After the specified timeout period,
the SQL interactive interface attempts to reconnect to the
ObjectServer. If the connection is unsuccessful after a
second timeout period, the SQL interactive interface will
attempt to connect to a backup ObjectServer, where
available. By default, no timeout is specified.

On Windows, -l specifies the maximum timeout value
allowed when connecting to the server, and -t specifies the
number of seconds before a command times out. If you do
not specify a timeout value, a command runs indefinitely.
This affects commands issued from within isql, not the
connection time. The default timeout for logging into isql
is 60 seconds.
Note: The nco_sql command runs nco_get_login_token to
obtain a login token and then runs the SQL interactive
interface (isql) with this token. The specified network
timeout is passed to both the nco_get_login_token and
isql binaries when they are launched. If you run nco_sql
with -secure, do not set the timeout to a value greater than
14 seconds because a secure login token is only valid for 15
seconds. A larger timeout can used with the -nosecure
option.

-nosecure When specified, login information is not encrypted when it
is transmitted between components.

Chapter 5. ObjectServer SQL 153

Table 26. Command-line options for the nco_sql and isql commands (continued)

Option Description

-password password

-P password on Windows

Specifies the password for the user.

On Windows, if you are using an empty password, such as
with the default NCOMS ObjectServer, the -P option must
be specified as the last item. For example:

"%NCHOME%\omnibus\bin\isql" -U root -S NCOMS -i
update71to72.sql -P

Attention: The password is visible if it is specified on the
command line. If not specified, you are prompted for the
password.

-secure When specified, login information is automatically
encrypted when it is transmitted between components.

This is the default for all supported releases of Tivoli
Netcool/OMNIbus.

-server servername

-S servername on Windows

Specifies the name of the ObjectServer to which to connect.
The default is NCOMS.

-user username

-U username on Windows

Specifies the name of a Tivoli Netcool/OMNIbus user. The
default is the user running the command.

If the user name contains spaces, enclose it in double
quotation marks (" "). For example, on UNIX:
$NCOME/omnibus.bin/nco_sql -server NCOMS -user "NCOMS
Admin".

Related concepts:
“Running the SQL interactive interface in secure mode” on page 157
When an ObjectServer runs in secure mode, it requires clients such as probes,
desktops, gateways, and the SQL interactive interface to connect using valid user
names and passwords. The login information is automatically encrypted when it is
transmitted between components to make snooping ineffective.
Related tasks:
“Running SQL commands in the SQL interactive interface”
After connecting to the SQL interactive interface with a user name and password, a
numbered prompt is displayed. Enter ObjectServer SQL commands at the prompt.

Running SQL commands in the SQL interactive interface
After connecting to the SQL interactive interface with a user name and password, a
numbered prompt is displayed. Enter ObjectServer SQL commands at the prompt.

About this task

The prompt looks like this:
1>

To issue a command, use the following steps:
1. Enter your command at the prompt and press Enter.
2. On a new line, enter the keyword go (in lowercase letters), and press Enter to

process the command.

154 IBM Tivoli Netcool/OMNIbus: Administration Guide

Note: The nco_sql utility does not allow whitespace before the go keyword. For
example, if you run nco_sql commands from a script and use whitespace to indent
the go keyword, the SQL statements in the script will fail.

The SQL interface has the following characteristics:
v You can enter multiple commands, separated by semicolons (;), and run them all

with a single go command.
v You can split a single command over several lines.
v To run the default editor (as defined by the EDITOR environment variable) in

the nco_sql utility, enter vi at the beginning of a new line.
v To cancel a command, enter reset at the beginning of a new line, or press

Ctrl+C anywhere on a line.
Any commands that have not been run are discarded.

v To read in a file, enter :r filename at the beginning of a new line.
Do not include the go command in the file. Instead, enter the go command at the
beginning of a new line.

v To run an operating system command, enter !! followed by the command at the
beginning of a new line. For example: !!ls

Commands have a limit of 4094 characters per line. If you need to use a longer
command, you can split it over several lines or use the default editor to issue the
command.

SQL syntax notation
An SQL syntax notation is used to describe ObjectServer SQL commands that you
can run from the SQL interactive interface.

An example syntax notation for table creation is as follows:
CREATE TABLE [database_name.]table_name
PERSISTENT | VIRTUAL
(column_name data_type [PRIMARY KEY | NODEFAULT | NOMODIFY | HIDDEN],...
[, PRIMARY KEY(column_name,...)]);

Tip: When entering an SQL command, you must specify the keywords in the
order listed in the syntax descriptions.

The following table describes the synax notation used for SQL commands.

Table 27. SQL syntax notation

Syntax Description

{ a | b } In SQL syntax notation, curly brackets enclose two or more
required alternative choices, separated by vertical bars.

[] In SQL syntax notation, square brackets indicate an
optional element or clause. Multiple elements or clauses are
separated by vertical bars.

| In SQL syntax notation, vertical bars separate two or more
alternative syntax elements.

... In SQL syntax notation, ellipses indicate that the preceding
element can be repeated. The repetition is unlimited unless
otherwise indicated.

Chapter 5. ObjectServer SQL 155

Table 27. SQL syntax notation (continued)

Syntax Description

,... In SQL syntax notation, ellipses preceded by a comma
indicate that the preceding element can be repeated, with
each repeated element separated from the last by a comma.
The repetition is unlimited unless otherwise indicated.

a In SQL syntax notation, an underlined element indicates a
default option.

() In SQL syntax notation, parentheses appearing within the
statement syntax are part of the syntax and should be
typed as shown, unless otherwise indicated.

Within the syntax:
v SQL keywords are shown in uppercase; for example, CREATE, TABLE, and

PERSISTENT. Note, however, that SQL keywords are not case-sensitive, and can
appear in uppercase, lowercase, or mixed case.

v Variable values are depicted using italic text. For example, database_name requires
the entry of an actual database name, table_name requires the entry of an actual
table name, column_name requires the entry of an actual column name, and
data_type requires the entry of an actual data type.

Naming conventions for ObjectServer objects
When issuing SQL commands, you must adhere to the naming conventions
defined for ObjectServers.

The name of an ObjectServer must consist of 29 or fewer uppercase letters and
cannot begin with an integer.

When creating an ObjectServer object, you must give it a unique name for that
type of object. The names of ObjectServer objects must begin with an uppercase or
lowercase letter, followed by uppercase or lowercase letters, numbers, or
underscore (_) characters, up to 40 characters in length.

Note: User, group, and role names can be any text string enclosed in quotation
marks up to 64 characters in length.

Names of ObjectServer objects and identifiers are case-sensitive.

Specifying paths in the SQL interactive interface
Some SQL commands require you to enter path names.

About this task

For example, on UNIX, you can create a file by entering the following command:

create file TESTFILE01 '/tmp/testfile01';

On Windows, you must escape the backslash character in file paths or the path
will not be interpreted correctly. For example, you can create an ObjectServer file
on Windows using the following command:

create file TESTFILE01 'c:\\temp\\testfile01.txt';

156 IBM Tivoli Netcool/OMNIbus: Administration Guide

You can also use the UNIX path separator when specifying paths on Windows. The
following UNIX path is also interpreted correctly on Windows:
create file TESTFILE01 ’c:/temp/testfile01.txt’;

Using text files for input and output
You can read and redirect text files using the SQL interactive interface. This
function is useful when you need to perform repetitive tasks.

About this task

The text file must contain only SQL commands and must end with the go
keyword. Otherwise, the commands will not be processed.

For example, to run the SQL commands in a text file named my_SQL_file.txt from
a UNIX command line, enter the following command:

nco_sql -server OS1 -username user_name -password password <
my_SQL_file.txt

You can also direct the output to a file. For example:

nco_sql -server OS1 -username user_name -password password <
my_SQL_file.txt > output.txt

Windows You cannot use the std redirection characters < and > to redirect input to
a text file, or redirect output from a text file. Instead, use the command-line
argument -i filename in place of < and use the command-line argument -o in place
of >.

Example: SQL interactive interface session on UNIX
This example shows an SQL interactive interface session on UNIX, for running
nco_sql and entering commands.
nco_sql -server OS1 -username myuser -password mypass

1> select * from alerts.status;
2> go

The results of the command are displayed.

Running the SQL interactive interface in secure mode
When an ObjectServer runs in secure mode, it requires clients such as probes,
desktops, gateways, and the SQL interactive interface to connect using valid user
names and passwords. The login information is automatically encrypted when it is
transmitted between components to make snooping ineffective.

The SQL interactive interface runs in secure mode unless you specify the -nosecure
command-line option when starting the SQL interactive interface.

When you run the SQL interactive interface in secure mode, it uses the
nco_get_login_token utility to encrypt its login data for transmission. The utility
produces a token that can be used only once to log in to the ObjectServer. The
token has a time limit after which it expires and becomes invalid.

Chapter 5. ObjectServer SQL 157

Related tasks:
“Starting the SQL interactive interface” on page 152
Before you start the SQL interactive interface, you are required to connect to an
ObjectServer as a specific user.

Encrypting passwords in UNIX nco_sql scripts
You can use the nco_sql_crypt utility to encrypt plain text login passwords so that
they are not exposed in UNIX scripts that run nco_sql. This is applicable only
when running in non-FIPS 140–2 mode.

About this task

When running in FIPS 140–2 mode, leave the passwords in plain text in the scripts,
or use the nco_aes_crypt utility with the -d option to decrypt any sensitive data
before use.

To encrypt and use a plain text password in non-FIPS 140–2 mode:

Procedure
1. Enter the following command:

$NCHOME/omnibus/bin/nco_sql_crypt plaintext_password

In this command, plaintext_password represents the unencrypted form of the
password. The nco_sql_crypt utility displays an encrypted version of the
password.

2. Copy the encrypted password into the script.

Results

Passwords encrypted by using the nco_sql_crypt utility are decrypted by the
ObjectServer when the connection is made.

Exiting the SQL interactive interface

About this task

To exit the SQL interactive interface:

Procedure

Perform the appropriate action for your operating system:

Option Description

UNIX Press Ctrl+D or enter quit or exit at the beginning of a new line.

Windows Enter quit or exit at the beginning of a new line.

You are disconnected from the ObjectServer and returned to the operating system
prompt.

158 IBM Tivoli Netcool/OMNIbus: Administration Guide

Creating, altering, and dropping ObjectServer objects
The ObjectServer stores, manages, and processes event data collected by external
applications such as probes and gateways. The default storage structures (or
objects) are created according to SQL definition files.

You can use Data Definition Language (DDL) commands to create, alter, and drop
ObjectServer objects. The following table lists each object and the DDL commands
that can be used.

Table 28. ObjectServer objects and associated DDL commands

ObjectServer object Allowed DDL commands

DATABASE CREATE DATABASE

DROP DATABASE

TABLE CREATE TABLE

ALTER TABLE

DROP TABLE

INDEX CREATE INDEX

DROP INDEX

VIEW CREATE VIEW

DROP VIEW

RESTRICTION FILTER CREATE RESTRICTION FILTER

DROP RESTRICTION FILTER

FILE CREATE FILE

ALTER FILE

DROP FILE

Databases
A database is a structured collection of data organized for quick access to desired
information. A relational database uses tables as logical containers to store this data
in rows and columns.

You can create and drop databases using ObjectServer SQL.

Creating a database
Use the CREATE DATABASE command to create a database.

Syntax
CREATE DATABASE database_name;

The database name must be unique within the ObjectServer and comply with the
ObjectServer naming conventions.

A database is always persistent.

Example
create database mydb;

Chapter 5. ObjectServer SQL 159

Related concepts:
“Naming conventions for ObjectServer objects” on page 156
When issuing SQL commands, you must adhere to the naming conventions
defined for ObjectServers.

Dropping a database
Use the DROP DATABASE command to drop an existing database.

You cannot drop a database if it contains any objects. You also cannot drop the
security or catalog databases, which are system-initialized databases.

Syntax
DROP DATABASE database_name;

Example
drop database mydb;

Related concepts:
“System-initialized databases”
When you initialize an ObjectServer, a number of default databases are created.

System-initialized databases
When you initialize an ObjectServer, a number of default databases are created.

The following table describes these system-initialized databases.

Table 29. System-initialized databases

Database name Type of database Description

security System Contains information about the
security system, including users,
roles, groups, and permissions.

catalog System Contains metadata about
ObjectServer objects.

alerts User Contains alert status information,
forwarded to the ObjectServer by
probes and gateways.

service User Used to support IBM Tivoli
Composite Application Manager for
Internet Service Monitoring.

custom User Can be used for tables added by
users.

persist System Records internal ObjectServer state
information.

transfer System Used internally by the ObjectServer
unidirectional and bidirectional
gateways to synchronize security
information between ObjectServers.

160 IBM Tivoli Netcool/OMNIbus: Administration Guide

Table 29. System-initialized databases (continued)

Database name Type of database Description

master User Used for compatibility with prior
releases of Tivoli Netcool/OMNIbus.
Tables in the master database also
support the desktop ObjectServer
architecture.

For details about the desktop
ObjectServer architecture, see the IBM
Tivoli Netcool/OMNIbus Installation and
Deployment Guide.

tools User Used for compatibility with prior
releases of Tivoli Netcool/OMNIbus.

registry User Contains information about
distributed Tivoli Netcool/OMNIbus
configurations.

iduc_system User Contains all of the required IDUC
application support tables for
accelerated event notification,
sending information messages, and
invoking commands.

precision User Used by IBM Tivoli Network
Manager IP Edition to implement the
service-affected events application.

Restriction: The ObjectServer maintains system databases. You can view, but
cannot modify, the data in them.
Related concepts:
“Configuring databases” on page 134
Database configuration involves the creation and maintenance of database tables,
and columns within the tables.
Related reference:
Appendix A, “ObjectServer tables,” on page 357
The ObjectServer database contains the following tables: alerts tables, service
tables, system catalog tables, statistics tables, client tool support tables, desktop
tools tables, desktop ObjectServer tables, security tables, IDUC channel tables, and
service-affected events tables.

Tables
The main storage structure of the ObjectServer is the table.

A table has a fixed number of data-typed columns. The name of each column is
unique to the table. A table contains zero or more rows of data in the format
defined by the table's column list.

The fully-qualified table name includes the database name and the table name,
separated by a period. For example, the status table in the alerts database is
identified as alerts.status.

Chapter 5. ObjectServer SQL 161

Creating a table
Use the CREATE TABLE command to create a table.

Syntax
CREATE TABLE [database_name.]table_name
PERSISTENT | VIRTUAL
(column_name data_type [PRIMARY KEY | NODEFAULT | NOMODIFY | HIDDEN],...
[, PRIMARY KEY(column_name,...)]);

The table name must be unique within the database and comply with the
ObjectServer naming conventions.

The storage type is either PERSISTENT or VIRTUAL. A persistent table is re-created,
complete with all its data, when the ObjectServer restarts. A virtual table is
recreated with the same table description, but without any data, when the
ObjectServer restarts.

When you define columns, you must specify the column name and data type, and
can also specify optional properties.

The maximum number of columns in a table is 512, excluding the
system-maintained columns. The maximum row size for a table, which is the sum
of the length of the columns in the row, is 64 KB.

Example
create table mydb.mytab persistent
(col1 integer primary key, col2 varchar(20));

Related concepts:
“Naming conventions for ObjectServer objects” on page 156
When issuing SQL commands, you must adhere to the naming conventions
defined for ObjectServers.

Specifying data types for columns:

Each column value in the ObjectServer has an associated data type. The data type
determines how the ObjectServer processes the data in the column. For example,
the plus operator (+) adds integer values or concatenates string values, but does
not act on Boolean values.

When creating a table using the CREATE TABLE command, you must specify a
data type for each column that you define.

Important: You can display columns only of type CHAR, VARCHAR, INCR,
INTEGER, and TIME in the event list. Do not add columns of any other type to
the alerts.status table. If you add any columns that are not of type CHAR,
VARCHAR, INCR, INTEGER, or TIME, probes cannot write to the alerts.status
table. As a result, the probes fail to start.

The data types supported by the ObjectServer are listed in the following table.

Table 30. ObjectServer data types

SQL type Description Default value
ObjectServer ID for
data type

INTEGER 32-bit signed integer. 0 0

162 IBM Tivoli Netcool/OMNIbus: Administration Guide

Table 30. ObjectServer data types (continued)

SQL type Description Default value
ObjectServer ID for
data type

INCR 32-bit unsigned
auto-incrementing
integer. Applies to
table columns only,
and can only be
updated by the
system.

1 5

UNSIGNED 32-bit unsigned
integer.

0 12

BOOLEAN TRUE or FALSE. FALSE 13

REAL 64-bit signed floating
point number.

0.0 14

TIME Time, stored as the
number of seconds
since midnight
January 1, 1970. This
is the Coordinated
Universal Time
(UTC) international
time standard.

Thu Jan 1 01:00:00
1970

1

CHAR(integer) Fixed size character
string, integer
characters long (8192
Bytes is the
maximum).

The char type is
identical in operation
to VARCHAR, but
performance is better
for mass updates that
change the length of
the string.

'' 10

VARCHAR(integer) Variable size
character string, up
to integer characters
long (8192 Bytes is
the maximum).

The VARCHAR type
uses less storage
space than the char
type and the
performance is better
for deduplication,
scanning, insert, and
delete operations.

'' 2

INTEGER64 64-bit signed integer. 0 16

UNSIGNED64 64-bit unsigned
integer.

0 17

Chapter 5. ObjectServer SQL 163

Related reference:
“Creating a table” on page 162
Use the CREATE TABLE command to create a table.
“alerts.status table” on page 357
The alerts.status table contains status information about problems that have been
detected by probes.
“Creating a user-defined signal” on page 239
Use the CREATE SIGNAL command to create a user-defined signal. When you
create a signal, you define a list of data-typed attributes.

Specifying optional properties for columns:

You can specify optional properties for the columns that you define when creating
a table.

The optional column properties are described in the following table.

Table 31. Column properties

Column property Description

PRIMARY KEY The column is created as a primary key. The primary key
column or columns uniquely identify each row. A primary
key column must have a default value and cannot be
hidden.

NODEFAULT The value of this column must be specified in the initial
INSERT command. You use the INSERT command to insert
a new row of data into an existing table.

NOMODIFY The value of this column cannot be changed after the initial
INSERT command.

HIDDEN Data is not written to or read from a hidden column when
inserting or selecting a row. The column name must be
specified explicitly to insert data into or select from it.
Hidden columns contain system information or information
that is not applicable to most users.

In the CREATE TABLE command, the syntax for specifying which columns are
primary keys is as follows:
(column_name data_type [PRIMARY KEY | NODEFAULT | NOMODIFY | HIDDEN],...
[, PRIMARY KEY(column_name,...)]);

Based on this syntax, you can create columns as primary keys in either or both of
the following ways:
v Specify the PRIMARY KEY column property as part of a column definition.
v Specify one or more columns that make up the primary key by including a

comma-separated list of columns in a PRIMARY KEY clause following the
column definitions.

Related reference:
“Creating a table” on page 162
Use the CREATE TABLE command to create a table.
“Inserting a new row of data into a table (INSERT command)” on page 194
Use the INSERT command to insert a new row of data into an existing table.

164 IBM Tivoli Netcool/OMNIbus: Administration Guide

Altering a table
Use the ALTER TABLE command to change the characteristics of an existing table
and its columns. You can add, drop, and alter columns.

Restriction: You cannot alter system tables that contain metadata about
ObjectServer objects.

Syntax
ALTER TABLE [database_name.]table_name
ADD [COLUMN] column_name data_type [NODEFAULT | NOMODIFY | HIDDEN]
DROP [COLUMN] column_name
ALTER [COLUMN] column_name SET NOMODIFY { TRUE | FALSE }
ALTER [COLUMN] column_name SET HIDDEN { TRUE | FALSE }
ALTER [COLUMN] column_name SET NODEFAULT { TRUE | FALSE }
ALTER [COLUMN] column_name SET WIDTH value;

You can specify more than one ADD, DROP, or ALTER setting in a single ALTER
TABLE command.

Example
alter table mytab add col3 real;

Related concepts:
“System tables” on page 169
System tables are special tables maintained by the ObjectServer, and they contain
metadata about ObjectServer objects.

Adding a column:

To add columns to an existing table, use the ADD COLUMN setting with the
ALTER TABLE command.

In this command, the syntax for adding columns is as follows:
ADD [COLUMN] column_name data_type [NODEFAULT | NOMODIFY | HIDDEN]

When you add columns, you must specify the column name and data type. You
can also specify optional properties.

You cannot add primary keys to an existing table.

When a new column is added to the table using the NODEFAULT clause, any INSERT
statements that are sent from the probes or gateways fail. The failure occurs
because they do not comply with the NODEFAULT constraint.

When you mark a column as NODEFAULT and a row is inserted into that table, the
insert statement must explicitly set a value for that column or the INSERT
statement becomes invalid.

This occurs because the INSERT statement will not attempt to populate the
NODEFAULT column. The trigger will also be invalid and cannot be successfully
recompiled.

Chapter 5. ObjectServer SQL 165

Related reference:
“Altering a table” on page 165
Use the ALTER TABLE command to change the characteristics of an existing table
and its columns. You can add, drop, and alter columns.
“Specifying data types for columns” on page 162
Each column value in the ObjectServer has an associated data type. The data type
determines how the ObjectServer processes the data in the column. For example,
the plus operator (+) adds integer values or concatenates string values, but does
not act on Boolean values.
“Specifying optional properties for columns” on page 164
You can specify optional properties for the columns that you define when creating
a table.

Dropping a column:

To drop columns from an existing table, use the DROP COLUMN setting with the
ALTER TABLE command.

In this command, the syntax for dropping columns is as follows:
DROP [COLUMN] column_name

You cannot drop a column if the column is a primary key.

When dropping a column, a considerable amount of preliminary action is required
to identify and remove any external dependencies on the column. You must search
for any references to the column within triggers, procedures, views, and restriction
filters by querying the relevant database tables. You must also search your probe
rules files and gateway mapping files for references to the column.

Attention: If you drop a column on which triggers, procedures, views, restriction
filters, or indexes depend, these dependent objects are also deleted, and a warning
is written to the ObjectServer log file. To avoid inadvertently deleting triggers,
procedures, views, or restriction filters, read the following guidelines for dropping
columns. (Because indexes are directly linked to columns, indexes are always
deleted when their associated columns are dropped.)

The following guidelines are based on an example scenario where you want to
drop the Country column from a table in your ObjectServer:
1. Connect to your ObjectServer (for example, OWL) using the SQL interactive

interface, as shown in the following table. Your user name is assumed by
default, but you are required to enter your password.

Table 32. Starting the SQL interactive interface

Option Description

UNIX Enter:

$NCHOME/omnibus/bin/nco_sql -server OWL

Windows Enter:

%NCHOME%\omnibus\bin\isql -S OWL

2. Back up your ObjectServer to a temporary location (for example,
/tmp/mybackup) using the ALTER SYSTEM BACKUP command. This
precautionary measure ensures that you can restore your system if required.

166 IBM Tivoli Netcool/OMNIbus: Administration Guide

1> alter system backup ’/tmp/mybackup’;
2> go

3. List details of your triggers, as stored in the catalog.triggers table:
1> describe catalog.triggers;
2> go

The type of key, name, data type, and length of each column in the table are
output to the screen.

4. Retrieve the names of all triggers that reference the Country column in the body
or the evaluate clause of the trigger:
1> select TriggerName from catalog.triggers where CodeBlock like
’ Country’ or EvaluateBlock like ’ Country’;

5. Make a note of all listed triggers and remove the Country references by editing
each trigger. You can do this from the Trigger Details window (Action tab) in
the Netcool/OMNIbus Administrator.

Important: Before you make any of the changes described in the remaining
steps of this procedure, check for the following conditions:
v There might be two or more tables using the same column name in your

schema. If this is the case, identify the correct triggers for the table that you
want to drop before you make any changes.

v Check that there are no dependencies between triggers that might result in
unwanted changes.

6. Repeat steps 3 to 5 to identify any other objects that reference the Country
column, and to remove all instances of the reference. The following table lists
the database tables that you need to search, the relevant SELECT statements,
and the Netcool/OMNIbus Administrator windows that you can use to edit the
object.

Table 33. System catalog tables to be searched, SELECT statements, and Netcool/OMNIbus Administrator windows

Object type Table name SELECT statement
Netcool/OMNIbus
Administrator window

Procedures catalog.sql_procedures select ProcedureName from
catalog.sql_procedures where
CodeBlock like ’Country’;

SQL Procedure Details
window

Restriction Filters catalog.restrictions select RestrictionName from
catalog.restrictions where
ConditionText like ’Country’;

Restriction Filter Details
window

Views catalog.views select ViewName from
catalog.views where CreationText
like ’Country’;

7. Search your probe rules files and remove any references to the column.
8. Search your gateway mapping files $NCHOME/omnibus/gates/objserv_type/

objserv_type.map, where type represents uni or bi. Remove any references to
the column.

9. After all the references have been removed, drop the Country column using the
ALTER TABLE ... DROP COLUMN syntax.

Chapter 5. ObjectServer SQL 167

Related concepts:
“Retrieving data from a table or view (SELECT command)” on page 197
Use the SELECT command to retrieve one or more rows, or partial rows, of data
from an existing table or view, and to perform grouping functions on the data.
Related reference:
“Changing the settings of the ObjectServer (ALTER SYSTEM command)” on page
205
Use the ALTER SYSTEM command to change the default and current settings of
the ObjectServer by setting properties, shut down the ObjectServer, drop user
connections, or back up the ObjectServer.
“Displaying details of columns in a table or view (DESCRIBE command)” on page
203
Use the DESCRIBE command to display information about the columns of the
specified table or view.
“Altering a table” on page 165
Use the ALTER TABLE command to change the characteristics of an existing table
and its columns. You can add, drop, and alter columns.

Altering a column:

To alter columns in an existing table, use the ALTER COLUMN setting with the
ALTER TABLE command.

In this command, the syntax for altering columns is as follows:
ALTER [COLUMN] column_name SET NOMODIFY { TRUE | FALSE }
ALTER [COLUMN] column_name SET HIDDEN { TRUE | FALSE }
ALTER [COLUMN] column_name SET NODEFAULT { TRUE | FALSE }
ALTER [COLUMN] column_name SET WIDTH value

Use the following guidelines to alter column properties:
v To alter the NOMODIFY, HIDDEN, and NODEFAULT properties of an existing column,

set the appropriate property to TRUE or FALSE. A primary key column must have
a default value and cannot be hidden.

v To alter the width of a column with a data type of varchar, use the WIDTH
property and specify the value setting as a length in bytes. You cannot alter the
width of primary keys.

When you mark a column as NODEFAULT and a row is inserted into that table, the
insert statement must explicitly set a value for that column or the INSERT
statement becomes invalid.

This occurs because the INSERT statement will not attempt to populate the
NODEFAULT column. The trigger will also be invalid and cannot be successfully
recompiled.
Related reference:
“Specifying optional properties for columns” on page 164
You can specify optional properties for the columns that you define when creating
a table.
“Altering a table” on page 165
Use the ALTER TABLE command to change the characteristics of an existing table
and its columns. You can add, drop, and alter columns.

168 IBM Tivoli Netcool/OMNIbus: Administration Guide

Dropping a table
Use the DROP TABLE command to drop an existing table.

You cannot drop a table if it is referenced by other objects, such as triggers, or if it
contains any data. You also cannot drop system tables, which hold metadata about
ObjectServer objects.

Syntax
DROP TABLE [database_name.]table_name;

Example

To delete all rows of a table:
delete from mytab;

To drop the table:
drop table mytab;

Related concepts:
“System tables”
System tables are special tables maintained by the ObjectServer, and they contain
metadata about ObjectServer objects.

System tables
System tables are special tables maintained by the ObjectServer, and they contain
metadata about ObjectServer objects.

System tables are identified by the database name catalog. For example, the
catalog.columns table contains metadata about all the columns of all the tables in
the ObjectServer.

You can view information in the system tables by using the SELECT and
DESCRIBE commands, but you cannot add, modify, or delete system tables or their
contents by using ObjectServer SQL.
Related concepts:
“Retrieving data from a table or view (SELECT command)” on page 197
Use the SELECT command to retrieve one or more rows, or partial rows, of data
from an existing table or view, and to perform grouping functions on the data.
Related reference:
“Displaying details of columns in a table or view (DESCRIBE command)” on page
203
Use the DESCRIBE command to display information about the columns of the
specified table or view.
“System catalog tables” on page 372
The catalog database contains the system tables that are created and maintained by
the ObjectServer. System tables contain metadata about ObjectServer objects.

Chapter 5. ObjectServer SQL 169

Indexes
You can use indexes to improve the performance of the ObjectServer database. The
use of well-designed indexes can reduce or eliminate the need for full table scans
during the execution of SQL queries, and result in faster data retrieval.

Creating an index
Use the CREATE INDEX command to create an index on a database table.

Tip: SQL query guidelines and indexing guidelines are available to help you
determine which columns to index, and what type of index to create for a column.

Syntax
CREATE INDEX index_name
ON database_name.table_name
[USING { HASH | TREE }] (column_name);

The index_name value must be unique within the ObjectServer and comply with the
ObjectServer naming conventions. For ease of identification and uniqueness,
consider using a naming convention for your indexes; for example,
column_nameIdx or column_nameIndex, where column_name is the name of the
column.

The table name specified after the ON keyword must be fully qualified with the
database name; for example, alerts.status.

Restriction: You cannot create indexes on the columns in system tables. These
tables contain metadata about ObjectServer objects and are stored in the catalog
database.

Use the optional USING setting to create a hash or tree index. If omitted, a hash
index is created by default. A hash index is appropriate for use only with SQL
queries that denote equality. A tree index can additionally be used for ordered
queries.

Restriction: You cannot create a hash index on a single primary key field. You
cannot create a tree index on columns with Boolean data values.

You must specify the name of the single column that is being indexed.

Example
create index SeverityIdx on alerts.status (Severity);

create index ExpireTimeIdx on alerts.status using tree (ExpireTime);

170 IBM Tivoli Netcool/OMNIbus: Administration Guide

Related concepts:
“Naming conventions for ObjectServer objects” on page 156
When issuing SQL commands, you must adhere to the naming conventions
defined for ObjectServers.
Related reference:
“SQL query guidelines” on page 344
When an SQL query is passed to the ObjectServer, query optimization and query
plans are used to evaluate the available methods for accessing or modifying the
data, and to select the most efficient way to run the query.
“Indexing guidelines” on page 348
Indexing can affect the performance of your SQL queries. Without indexing, a full
database table scan is typically performed when an SQL query runs. Use indexing
to limit the number of rows that are examined.
“System catalog tables” on page 372
The catalog database contains the system tables that are created and maintained by
the ObjectServer. System tables contain metadata about ObjectServer objects.

Dropping an index
Use the DROP INDEX command to remove a redundant index on a database table.

Syntax
DROP INDEX index_name;

The index_name value is the unique name for the index being dropped.

Note: If an indexed column is dropped, the index is automatically dropped.

Example
drop index SeverityIdx;

Viewing index details
To see what columns are currently indexed, you can examine the contents of the
catalog.indexes table either from the Netcool/OMNIbus Administrator interface, or
by using the SELECT command.

About this task

To view index details in the catalog.indexes table, perform either of the following
steps:

Procedure
v From the Netcool/OMNIbus Administrator window:

1. Select the System menu button.
2. Click Databases. The Databases, Tables and Columns pane opens.
3. Select catalog.indexes.
4. Click the Data View tab on the Databases, Tables and Columns pane to view

the table data.
v From the SQL interactive interface, enter the following command:

select * from catalog.indexes;

Chapter 5. ObjectServer SQL 171

Related concepts:
“SQL interactive interface” on page 151
You can use the SQL interactive interface (called nco_sql on UNIX and isql on
Windows) to connect to an ObjectServer, and use SQL commands to interact with,
and configure, the ObjectServer.
“Retrieving data from a table or view (SELECT command)” on page 197
Use the SELECT command to retrieve one or more rows, or partial rows, of data
from an existing table or view, and to perform grouping functions on the data.
Related tasks:
“Creating indexes” on page 140
Use Netcool/OMNIbus Administrator to create indexes on columns of database
tables.
“Starting Netcool/OMNIbus Administrator” on page 64
You must run the nco_config utility to start Netcool/OMNIbus Administrator.
Related reference:
“catalog.indexes table” on page 382
The catalog.indexes table stores information about indexes, including the column
and database table on which the index is based, and the index type.

Views
A view is a virtual table projected from selected rows and columns of a real table,
allowing subsets of table data to be easily displayed and manipulated.

For example, if you want a group of users to see only certain relevant columns in a
table, you can create a view that contains only those columns. You can also have
virtual columns, composed using expressions on columns in the underlying table.

Note: Views are primarily intended for internal use. Do not use views in
automations.
Related concepts:
“Expressions” on page 192
An expression is a syntactic combination of values and operations combined to
compute new values. Expressions can be simple or complex.

Creating a view
Use the CREATE VIEW command to create a view.

Syntax
CREATE [OR REPLACE] VIEW [database_name.]view_name
[(view_column_name,...)]
[TRANSIENT | PERSISTENT]
AS SELECT_cmd;

If there is a possibility that a view already exists with the same name as the one
you want to create, use the optional OR REPLACE keywords. If the view exists, it
is replaced by the one you are creating. If the view does not exist, a new one is
created.

The view name must be unique within the database and comply with the
ObjectServer naming conventions. The following additional restrictions apply to
the creation of views:
v If you do not specify a database name, the view is created in the alerts database.
v You cannot create a view on a view.

172 IBM Tivoli Netcool/OMNIbus: Administration Guide

v You cannot create a view on any table in the catalog database.

You can specify either a TRANSIENT or PERSISTENT storage type, depending on your
data storage requirements. A transient view is destroyed when the client that
created it disconnects. A persistent view is mirrored on disk. When the
ObjectServer restarts, the view is recreated.

The SELECT_cmd is any SELECT command (including aggregate SELECT
commands), with the following restrictions:
v You must specify all of the column names explicitly, rather than using a

wildcard (*), in the selection list.
v If you include virtual columns, you cannot update them.
v If you do not specify a database name, the default is alerts.
v You cannot specify a GROUP BY clause.
v You can only have a subquery containing a WHERE clause in an aggregate

SELECT statement.
v You cannot use virtual columns in an aggregate SELECT statement.
v If you create an aggregate view, you cannot perform an aggregate SELECT on it.

Example
create view alerts.myview persistent as select Severity, LastOccurrence, Summary
from alerts.status order by Severity, LastOccurrence;

Related concepts:
“Naming conventions for ObjectServer objects” on page 156
When issuing SQL commands, you must adhere to the naming conventions
defined for ObjectServers.
“Retrieving data from a table or view (SELECT command)” on page 197
Use the SELECT command to retrieve one or more rows, or partial rows, of data
from an existing table or view, and to perform grouping functions on the data.

Dropping a view
Use the DROP VIEW command to drop an existing view.

You cannot drop a view if it is referenced by other objects.

Syntax
DROP VIEW [database_name.]view_name;

If you do not specify a database name, the view is dropped from the alerts
database.

Example
drop view myview;

Chapter 5. ObjectServer SQL 173

Restriction filters
A restriction filter provides a way to restrict the rows that are displayed when a
user views a table.

After the restriction filter is assigned to a user or group, the restriction filter
controls the data that can be displayed and modified from client applications, and
modified in INSERT, UPDATE, and DELETE commands. Only rows that meet the
criteria specified in the restriction filter condition are returned.

You can assign only one restriction filter per table to a user or a group, but
multiple restriction filters can apply to a user. For example, a user can be assigned
a single restriction filter and can also be a member of one or more groups, to
which restriction filters are applied. So, if a user is a member of 3 groups to which
restriction filters are assigned, and the user is also assigned a restriction filter, 4
restriction filters apply to that user. If multiple restriction filters apply to a user, the
resulting data is a combination of all applicable restriction filters for the user or
group.

If you are using multiple restriction filters, make sure that you set the ObjectServer
RestrictionFiltersAND property appropriately.
Related reference:
“ObjectServer properties and command-line options” on page 3
Use the ObjectServer properties or command-line options to configure settings for
the ObjectServer. To avoid errors, add as many properties as possible to the
properties file rather than using the command-line options. Additional utilities are
provided that you can use to encrypt the property values.
“Modifying the details of an existing user (ALTER USER command)” on page 208
Use the ALTER USER command to change the settings, such as the password, for
the specified user. You can change more than one setting in a single ALTER USER
command.
“Modifying the details of an existing group (ALTER GROUP command)” on page
210
Use the ALTER GROUP command to change user settings for the specified group.
You can change more than one setting in a single ALTER GROUP command.

Creating a restriction filter
Use the CREATE RESTRICTION FILTER command to create a restriction filter.

Syntax
CREATE [OR REPLACE] RESTRICTION FILTER filter_name
ON database_name.table_name WHERE condition;

If there is a possibility that a restriction filter already exists with the same name as
the one you want to create, use the optional OR REPLACE keywords. If the
restriction filter exists, it is replaced by the one you are creating. If the restriction
filter does not exist, a new one is created.

Note: If you are replacing an existing restriction filter, only the condition can be
changed. A filter can be replaced even if it has been assigned to any users or
groups.

The restriction filter name must be unique and comply with the ObjectServer
naming conventions.

174 IBM Tivoli Netcool/OMNIbus: Administration Guide

The table name specified after the ON keyword must be fully qualified with the
database name; for example, alerts.status.

The condition consists of one or more expressions that return a subset of rows of
the table. Where applicable, you must specify fully-qualified table names within
the WHERE clause and any SELECT statements in the condition. Use the format
database_name.table_name for a fully-qualified table name.

A restriction filter is always persistent, and is recreated when the ObjectServer
restarts.

Example
create restriction filter myfilter on alerts.status where Severity = 5;

Tip: You can also create restriction filters in the Filter Builder.
Related concepts:
“Naming conventions for ObjectServer objects” on page 156
When issuing SQL commands, you must adhere to the naming conventions
defined for ObjectServers.
“Conditions” on page 192
A condition is a combination of expressions and operators that evaluate to TRUE
or FALSE.

Dropping a restriction filter
Use the DROP RESTRICTION FILTER command to drop an existing restriction
filter.

You cannot drop a restriction filter if it has been assigned to any users or groups.

Syntax
DROP RESTRICTION FILTER filter_name;

Example
drop restriction filter myfilter;

Files
ObjectServer files are user-defined storage objects for log or report data.

An ObjectServer file is a logical file that has a corresponding file or set of files on
the physical file system. You can define ObjectServer file sizes and the number of
physical files in a set.

Creating a file
Use the CREATE FILE command to create an ObjectServer file.

Syntax
CREATE [OR REPLACE] FILE file_name ’path_to_physical_file’
[MAXFILES number_files]
[MAXSIZE file_size { GBYTES | MBYTES | KBYTES | BYTES }];

If there is a possibility that an ObjectServer file already exists with the same name
as the one you want to create, use the optional OR REPLACE keywords. If the
ObjectServer file does not exist, a new one is created. If the ObjectServer file exists,
it is replaced by the one you are creating.

Chapter 5. ObjectServer SQL 175

Note: If you do not use the OR REPLACE keywords, you must specify a physical
file that does not already exist. If you use the OR REPLACE keywords, and the
physical file already exists, the physical file is overwritten if there is no
ObjectServer file associated with it.

The file name must be unique and comply with the ObjectServer naming
conventions.

The path_to_physical_file is the full path and name of the corresponding file on the
physical file system, for example, /log/out.log. On Windows platforms, you must
escape the backslash (\) character (for example: c:\\tmp\\testfile.txt) or use the
equivalent UNIX path (for example: c:/tmp/testfile.txt).

You can optionally set MAXFILES to specify the number of files in the file set. The
default is 1. If you set MAXFILES to a value greater than 1, when the first file
exceeds the maximum size, a new file is created. When that file exceeds the
maximum size, another new file is created and the process is repeated until the
maximum number of files in the set is reached. Then the oldest file is deleted and
the process repeats.

Note: A number, starting with 1 and incremented depending on the number of
files in the file set, is always appended to the specified file name (or file extension
if there is one).

You can optionally set MAXSIZE to specify the maximum file size. After a record
is written to the file that meets or exceeds that size, a new file is created. The
default setting is 0. If set to 0, there is no maximum file size, and therefore the file
set always consists of one file.

The minimum file size is 1 KB. The maximum size is 4 GB.

If the ObjectServer is restarted, new data is appended to the existing file.

Example
create file logit ’/log/logfile’
maxfiles 3
maxsize 20 KBytes;

If you run this example command, the following sequence of files are created and
used:
1. The ObjectServer creates an empty file named logfile1 in the /log directory.
2. The ObjectServer writes data to logfile1 until it exceeds the maximum file size

of 20 KB.
3. The ObjectServer renames logfile1 to logfile2. It then creates a new logfile1

and writes to this file until it exceeds the maximum size.
4. The ObjectServer renames logfile2 to logfile3 and renames logfile1 to

logfile2. It then creates a new logfile1 and writes to this file until it exceeds
the maximum size.

5. The ObjectServer deletes the oldest file (logfile3). It then renames logfile2 to
logfile3 and renames logfile1 to logfile2. It creates a new file named
logfile1 and writes to this file until it exceeds the maximum size.

This sequence is repeated until the file is altered or dropped.

176 IBM Tivoli Netcool/OMNIbus: Administration Guide

Related concepts:
“Naming conventions for ObjectServer objects” on page 156
When issuing SQL commands, you must adhere to the naming conventions
defined for ObjectServers.

Altering a file
Use the ALTER FILE command to change the configuration of an existing
ObjectServer file.

Syntax
ALTER FILE file_name
TRUNCATE |
SET ENABLED { TRUE | FALSE };

The TRUNCATE setting clears any information that has been written to the
physical file. When there is more than one physical file, the file that is currently
being written to is truncated; the other files in the set are deleted.

The ENABLED setting turns logging on and off. If TRUE, a WRITE INTO command
writes data to the file. If FALSE, WRITE INTO commands are ignored and nothing
is written to the file. Disabling a file is useful when you want to stop logging
temporarily, but do not want to discard the file you have configured.

Example
alter file logit truncate;

Related reference:
“Logging information to ObjectServer files (WRITE INTO command)” on page 202
Use the WRITE INTO command to write logging information to ObjectServer files.
For example, you can use the command to write output from a trigger to a log file.
An ObjectServer file is a logical file, which has a corresponding file or set of files
on the physical file system.

Dropping a file
Use the DROP FILE command to drop an existing ObjectServer file.

You cannot drop a file if it is being used, for example, in a trigger.

Syntax
DROP FILE file_name;

Dropping a file deletes the ObjectServer file; it does not delete any of the physical
files created in the file system.

Example
drop file logit;

Chapter 5. ObjectServer SQL 177

Reserved words
In the ObjectServer, certain words are reserved as SQL or ObjectServer keywords.

You are not allowed to use reserved words as object names in ObjectServer SQL.
The reserved words are listed alphabetically in the following tables.

A to E

Table 34. A to E

A B C D E

ACTCMD BACKUP CACHE DATABASE EACH

ADD BEFORE CALL DATE[TIME] EDGE

AFTER BEGIN CANCEL DEBUG ELSE

ALL BETWEEN CASE DEC[EMBER] ELSEIF

ALTER BI
DIRECTIONAL

CHAR[ACTER] DECLARE EMPTY

AND BINARY CHECK DEFERRED END

ANY BIND CHECK
POINTING

DELAYED ENCRYPTED

APR[IL] BOOL[EAN] COLUMN DELETE EVALUATE

ARGUMENTS BREAK COMMENT DESC EVENT

ARRAY BY COMMIT DESCENT EVERY

AS CONN[ECTION] DESCRIBE EVTFT

ASC COUNT DETACHED EXECUTABLE

ASSIGN CREATE DISABLE EXEC[UTE]

AUG[UST] CURRENT DIST EXTENSION

AUTHORIZE |
AUTHORISE

DISTINCT EXTERNAL

AVERAGE |
AVG

DO

DOUBLE

DROP

F to J

Table 35. F to J

F G H I J

FALSE GET HARD ID JAN[UARY]

FANP GETIDUC HAVING IDUC JOIN

FEB[RUARY] GRANT HIDDEN IF JUL[Y]

FILE GROUP HOST IMMEDIATE JUN[E]

FILTER HOURS IN

FLUSH INCLUDING

FOR INCR

FORMAT INCREMENT

178 IBM Tivoli Netcool/OMNIbus: Administration Guide

Table 35. F to J (continued)

F G H I J

FRI[DAY] INITIAL

FROM INSERT

FULL INT[EGER]

INT[EGER]64

INTO

ISQL

L to P (no reserved words begin with K)

Table 36. L to P (no reserved words begin with K)

L M N O P

LEAVE MAR[CH] NAMING OCT[OBER] PAM

LIKE MAX NEXT OF PASSWORD

LIMIT MAXFILES NO ON PERSISTENT

LINK MAXSIZE NODEFAULT ONCE PRIMARY

LOAD MAY NOMODIFY ONLY PRIORITY

LOCK[PH] MEMSTORE NOT OPTION PRIVILEGE

LOGIN MESSAGE NOTIFY OR PROCEDURE

METRIC NOV[EMBER] ORDER PROP[S]

MIN OUT PROTECT

MINUTES PUBLISH

MON[DAY]

Q to U

Table 37. Q to U

Q R S T U

QUERY RAISE SAT[URDAY] TABLE UNIDIRECT
IONAL

REAL SAVE TEMPORAL UNION

REGISTER SECONDS TEMP[ORARY] UNIQUE

REINSERT SELECT THEN UNLOAD

REMOVE SELF THU[RSDAY] UNREGISTER

REPLACE SEND TIME UNSIGNED

RESTRICTION SEP[TEMBER] TO UNSIGNED64

RESYNC SESSION TOKEN UNSUBSCRIBE

RETRY SET TOP UNTIL

REVOKE SHORT TRANS
[ACTION]

UPDATE

ROLE SHOW TRANSIENT UPDATING

ROW SIGNAL TRIGGER USE

ROWOF SKIP TRUE USER

Chapter 5. ObjectServer SQL 179

Table 37. Q to U (continued)

Q R S T U

SNDMSG TRUNCATE UTC

SOFT TUE[SDAY]

SQL TYPEOF

STATEMENT

STORE

SUBSCRIBE

SUM

SUN[DAY]

SVC

SYNC

SYSTEM

V to Y (no reserved words begin with Z)

Table 38. V to Y (no reserved words begin with Z)

V W X Y

VALUES WAIT XST YES

VARCHAR[ACTER] WED[NESDAY]

VERBOSE WHEN

VIA WHERE

VIEW WIDTH

VIRTUAL WITH

WORK

WRITE

SQL building blocks
Use the following building blocks to manipulate data in ObjectServer SQL
commands: operators, functions, expressions, and conditions.

Operators
You can use operators to compute values from data items.

An operator processes (adds, subtracts, and so on) a data item or items. The data
items on which the computation is performed are operands. Together, operators and
operands form expressions. In the expression 7 + 3, the plus symbol (+) is the
operator and 7 and 3 are operands.

Operators can be unary or binary. Unary operators act on only one operand. For
example, the minus (-) operator can be used to indicate negation. Binary operators
act on two operands. For example, the same minus (-) operator can be used to
subtract one operand from another.

180 IBM Tivoli Netcool/OMNIbus: Administration Guide

Some operators, such as the plus (+) operator, are polymorphic, and can be
assigned a different meaning in different contexts. For example, you can use the
plus (+) operator to add two numbers (7+3) or to concatenate two strings ('The
ObjectServer ' + 'started').

Operators used in ObjectServer SQL are divided into the following categories:
v Math and string operators
v Binary comparison operators
v List comparison operators
v Logical operators
Related concepts:
“Expressions” on page 192
An expression is a syntactic combination of values and operations combined to
compute new values. Expressions can be simple or complex.

Math and string operators
Use math operators to add, subtract, multiply, and divide numeric operands in
expressions. Use string operators to manipulate character strings (VARCHAR and
CHAR data types).

The following table describes the math operators supported by the ObjectServer.

Table 39. Math operators

Operator Description Example

+

-

Unary operators indicating a
positive or negative operand.

SELECT * FROM london.status WHERE
Severity = -1;

*

/

Binary operators used to
multiply (*) or divide (/) two
operands.

SELECT * FROM london.status WHERE Tally
* Severity > 10;

+

-

Binary operators used to add
(+) or subtract (-) two
operands.

SELECT * FROM london.status WHERE
Severity = Old_Severity - 1;

The following table describes the string operator supported by the ObjectServer.

Table 40. String operator

Operator Description Example

+ Binary operator used to
concatenate two strings.

UPDATE mydb.mystatus SET Location = Node
+ NodeAlias;

Binary comparison operators
Use binary comparison operators to compare numeric and string values for
equality and inequality.

The following table describes the comparison operators supported by the
ObjectServer.

Table 41. Comparison operators

Operator Description Example

= Tests for equality. SELECT * FROM london.status WHERE
Severity = 3;

Chapter 5. ObjectServer SQL 181

Table 41. Comparison operators (continued)

Operator Description Example

!=

<>

Tests for inequality. SELECT * FROM london.status WHERE
Severity <> 1;

<

>

<=

>=

Tests for greater than (>), less
than (<), greater than or
equal to (>=) or less than or
equal to (<=).

These operators perform
case-sensitive string
comparisons. In standard
ASCII case-sensitive
comparisons, uppercase
letters come before lowercase
letters.

SELECT * FROM london.status WHERE
Severity > 5;

%=

%!=

%<>

Tests for equality (%=) or
inequality (%!=, %<>)
between strings, ignoring
case. To be equal, the strings
must contain all of the same
characters, in the same order,
but they do not need to have
the same capitalization.

SELECT * FROM london.status WHERE
Location %= ’New York’;

%<

%>

%<=

%>=

Compares the lexicographic
relationship between two
strings, ignoring case. This
comparison determines
whether strings come before
(%<) or after (%>) other
strings alphabetically. You
can also find strings that are
less than or equal to (%<=)
or greater than or equal to
(%>=) other strings.

For example, aaa comes
before AAB because
alphabetically aaa is less than
(comes before) AAB when the
case is ignored.

SELECT * FROM london.status WHERE
site_code %< ’UK3’;

[NOT] LIKE The LIKE operator performs
string comparisons. The
string following the LIKE
operator, which can be the
result of a regular
expression, is the pattern to
which the column expression
is compared. A regular
expression can include the
pattern matching syntax
described in the IBM Tivoli
Netcool/OMNIbus User's
Guide.

The NOT keyword inverts
the result of the comparison.

SELECT * FROM london.status WHERE
Summary LIKE ’down’;

The result is all rows in which Summary
contains the substring down.

182 IBM Tivoli Netcool/OMNIbus: Administration Guide

The LIKE and NOT LIKE comparison operators allow regular expression
pattern-matching in the string being compared to the column expression. Regular
expressions are sequences of atoms that are made up of normal characters and
metacharacters. An atom is a single character or a pattern of one or more
characters in parentheses. Normal characters include uppercase and lowercase
letters, and numbers. Metacharacters are non-alphabetic characters that possess
special meanings in regular expressions. The ObjectServer supports two types of
regular expression libraries:
v NETCOOL: Use this default library for single-byte character processing.
v TRE: This library enables usage of the POSIX 1003.2 extended regular expression

syntax, and provides support for both single-byte and multi-byte character
languages.

For further information on these libraries, as well as descriptions of the regular
expression syntax formats and examples of usage, see the IBM Tivoli
Netcool/OMNIbus User's Guide.

List comparison operators
Use list comparison operators to compare a value to a list of values.

Conditions using list comparison operators use the binary comparison operators
with the logical operators (ANY, ALL, IN, or NOT IN).

The syntax of a list comparison expression is either:
expression comparison_operator { ANY | ALL } (expression,...)

or
expression [NOT] IN (expression,...)

If you use the ANY keyword, the list comparison condition evaluates to TRUE if the
comparison of the left hand expression to the right hand expressions returns TRUE
for any of the values. If you use the ALL keyword, the list comparison condition
evaluates to TRUE if the comparison of the left hand expression to the right hand
expressions returns TRUE for all of the values.

An IN comparison returns the same results as the =ANY comparison. A NOT IN
comparison returns the same results as the <>ALL comparison.

Restriction: The ANY and ALL operators are not supported in subqueries.

Example

The following query returns the rows in which Severity - 1 is equal to the value
of Old_Severity or the number 5.
select * from mystatus where Severity - 1 IN (Old_Severity, 5)

Related concepts:
“Binary comparison operators” on page 181
Use binary comparison operators to compare numeric and string values for
equality and inequality.
“Logical operators” on page 184
You can use logical operators on Boolean values to form expressions that resolve to
TRUE or FALSE.

Chapter 5. ObjectServer SQL 183

Logical operators
You can use logical operators on Boolean values to form expressions that resolve to
TRUE or FALSE.

The ObjectServer supports the following operators:
v NOT
v AND
v OR

You can combine comparisons using logical operators.

The following truth tables show the results of logical operations on Boolean values.
In the sample truth tables, A and B represent any value or expression.

A NOT expression is TRUE only if its input is FALSE, as shown in the following
table.

Table 42. Truth table for NOT operator

A NOT A

FALSE TRUE

TRUE FALSE

An AND expression is true only if all of its inputs are TRUE, as shown in the
following table.

Table 43. Truth table for AND operator

A B A AND B

FALSE FALSE FALSE

FALSE TRUE FALSE

TRUE FALSE FALSE

TRUE TRUE TRUE

An OR expression is TRUE if any of its inputs are TRUE, as shown in the following
table.

Table 44. Truth table for OR operator

A B A OR B

FALSE FALSE FALSE

FALSE TRUE TRUE

TRUE FALSE TRUE

TRUE TRUE TRUE

Example

The following query combines comparisons using logical operators:
SELECT * from alerts.status where Node = ’node1’ and Severity > 4 and
Summary like ’alert on .*’

184 IBM Tivoli Netcool/OMNIbus: Administration Guide

Example

The following query returns all rows in table t1 where the value for col1 is not
equal to 0:
select * from t1 where NOT(col1 = 0);

Bitwise operators
Use bitwise operators to form expressions that test or manipulate operands at the
binary level.

The ObjectServer supports bitwise operators on the following data types: integer,
unsigned, Boolean, integer64 and unsigned 64. If you attempt to perform bitwise
operations on unsupported data types, an “invalid type” error is generated.

The following table describes the bitwise operators supported by the ObjectServer:

Table 45. Bitwise operators

Operator Description Example

& Bitwise AND In the following example, the
result is 0:

SET ValueA = 1; SET ValueB
= 0; SET result = ValueA
& ValueB;

| Bitwise OR In the following example, the
result is 1:

SET ValueA = 1; SET ValueB
= 0; SET result = ValueA
| ValueB;

~ Bitwise NOT In the following example, the
result is -1:

SET ValueA = 0; SET result
= ~ValueA;

Operator precedence
If an expression contains multiple operators, the ObjectServer uses operator
precedence to determine the order in which to evaluate the expression.

Operators are evaluated from those with the highest precedence to those with the
lowest precedence. For example, the binary plus (+) operator has a lower
precedence than the multiplication operator (*). In the expression 3 + 5 * 2, the
result is 13 because 5 is multiplied by 2 before the result (10) is added to 3.

Use parentheses in an expression to change the order in which the items are
evaluated. The contents of parentheses are always evaluated before anything
outside of the parentheses. In the expression (3 + 5) * 2, the result is 16 because 3
is added to 5 before the result (8) is multiplied by 2.

If operators have equal precedence, they are evaluated in order from left to right.
The following table shows the order of precedence of all ObjectServer operators.

Table 46. Operator precedence

Highest Precedence

Chapter 5. ObjectServer SQL 185

Table 46. Operator precedence (continued)

Unary + - ~

Math * /

Binary + - & |

Comparison operators (including list comparisons)

NOT

AND

OR

Lowest Precedence

Functions
A function processes a data item or items in an SQL command and returns a value.

The syntax notation for a function is:
function(
operand,...)

Tip: The parentheses are optional if there are no operands to the function.

The following table describes the functions supported by the ObjectServer.

Table 47. ObjectServer functions

Function Description Example

array_len(array) Returns the number of elements in an
array. This function can only be used
in procedures or triggers.

If the array myarray has ten elements,
array_len(myarray) returns 10.

ceil(real) Takes a real argument and returns
the smallest integral value not less
than the argument.

ceil(2.01) returns 3.000000

dayasnum(time) Takes a time argument and extracts
the day of the week as an integer. If
no argument is specified, the
argument is assumed to be the
current time.

select dayasnum(LastOccurrence) from mytab;

Sunday is 0, Monday is 1, and so on.

dayname(time) Takes a time argument and returns
the name of the day. If no argument
is specified, the argument is assumed
to be the current time.

select dayname(LastOccurrence) from mytab;

The output is Monday, Tuesday, and so on.

dayofmonth(time) Takes a time argument and extracts
the day of the month as an integer. If
no argument is specified, the
argument is assumed to be the
current time.

select dayofmonth(LastOccurrence) from mytab;

dayofweek(time) Takes a time argument and extracts
the day of the week as an integer. If
no argument is specified, the
argument is assumed to be the
current time.

select dayofweek(LastOccurrence) from mytab;

Unlike dayasnum, Sunday is 1, Monday is 2, and
so on.

186 IBM Tivoli Netcool/OMNIbus: Administration Guide

Table 47. ObjectServer functions (continued)

Function Description Example

getdate() Takes no arguments and returns the
current date and time as a
Coordinated Universal Time (UTC)
value (the number of seconds since 1
January 1970).

To return all rows in the alerts.status table that
are more than ten minutes old:

select Summary, Severity from alerts.status
where LastOccurrence < getdate - 600;

getenv(string) Returns the value of the specified
environment variable as a string.

getenv(’NCHOME’) returns a directory name, for
example, /opt/netcool.

get_prop_value(string) Returns the value of the specified
ObjectServer property as a string.

get_prop_value(’Name’) returns the ObjectServer
name, for example, NCOMS.

getservername() Takes no arguments and returns the
name of the ObjectServer as a string.

select LastOccurrence from alerts.status
where ServerName = getservername();

hourofday(time) Takes a time argument and extracts
the hour of the day as an integer. If
no argument is specified, the
argument is assumed to be the
current time.

select hourofday(LastOccurrence) from mytab;

instance_of(class,
parent_class)

Returns TRUE if class is a subclass of
parent_class or if they are equal, using
the hierarchy defined in the
master.class_membership table.
Otherwise returns FALSE.

The variables class and parent_class
can both be either string or integer.

select Node, Summary, AlertGroup,
Server from alerts.status
where instance_of(Class, ’DB2’) = true;

is_env_set(string) Returns 1 if the specified
environment variable is set; 0
otherwise.

When the NCHOME environment variable is set,
is_env_set(’NCHOME’) returns 1.

log_2(real) Takes a positive real argument and
returns the logarithm to base 2.

log_2(4.0) returns 2.000000

lower(string) Converts a character string argument
into lowercase characters.

lower(’LIMA’) returns lima

ltrim(string) Removes whitespace from the left of
a string.

ltrim(’ tree’) returns tree.

minuteofhour(time) Takes a time argument and extracts
the minute of the hour as an integer.
If no argument is specified, the
argument is assumed to be the
current time.

select minuteofhour(LastOccurrence) from
mytab;

mod(int1,int2) Returns the integer remainder of int1
divided by int2.

mod(12,5) returns 2

monthasnum(time) Takes a time argument and extracts
the month of the year as an integer. If
no argument is specified, the
argument is assumed to be the
current time.

select monthasnum(LastOccurrence) from mytab;

January is 0, February is 1, and so on.

monthname(time) Takes a time argument and returns
the name of the month. If no
argument is specified, the argument
is assumed to be the current time.

select monthname(LastOccurrence) from mytab;

The output is January, February, and so on.

Chapter 5. ObjectServer SQL 187

Table 47. ObjectServer functions (continued)

Function Description Example

monthofyear(time) Takes a time argument and extracts
the month of the year as an integer. If
no argument is specified, the
argument is assumed to be the
current time.

select monthofyear(LastOccurrence) from
mytab;

Unlike monthasnum, January is 1, February is 2,
and so on.

nvp_exists(
string_nameval_pairs,
string_name)

Verifies that a name-value pair exists.

Used with extended attributes.

nvp_exists(ExtendedAttr, ’Region’)

Returns TRUE if Region exists in the extended
attributes as the name of a name-value pair. If the
name does not exist, the function will return
FALSE.

string
nvp_get(string
name_value_pairs,
string key)

Retrieves the value of name in a
name-value pair.

If the name exists in the attribute, the
function returns the value.

If name_value_pairs is not valid, the
empty string is returned and an error
logged.

If the key is not present, the empty
string is returned ('').

If there are multiple entries for the
name, the first one is returned.

nvp_get(ExtendedAttr, ’Region’)

Returns the Region attribute.

string
nvp_set(string
name_value_pairs,
string key,
any value)

Replaces or adds a name-value pair
to a name-value pair string. Returns
a new name-value pair string with
the new name-value added or
replaced.

Adds or replaces keys from a
name-value pair string and returns
the new name-value pair string. A
date is stored in seconds since 1970;
that is, the UNIX epoch format.

If name_value_pairs is not a valid
string (that is, it is an empty string or
contains entries that do not conform
to the correct format), then
$key="$value" is returned and an
error is logged.

If there are multiple entries for the
key, only the first is replaced.

ExtendedAttr = nvp_set(ExtendedAttr,
’Region’, ’EMEA’);

Sets the Region attribute in the extended
attributes.

power(real1, real2) Takes two real arguments and returns
real1 raised to the power of real2.

power(2.0, 3.0) returns 8.000000

rtrim(string) Removes whitespace from the right
of a string.

rtrim(’tree ’) returns tree.

secondofminute(time) Takes a time argument and extracts
the second of the minute as an
integer. If no argument is specified,
the argument is assumed to be the
current time.

select secondofminute(LastOccurrence) from
mytab;

188 IBM Tivoli Netcool/OMNIbus: Administration Guide

Table 47. ObjectServer functions (continued)

Function Description Example

split_multibyte(
string_message,
int_chunk_no,
int_chunk_len)

Returns the complete multi-byte
string strout of at most int_chunk_len
bytes, starting from byte
(int_chunk_no -1) * int_chunk_len of
string message.

If the split will cause a multi-byte
character to be incomplete in the
target string, the function returns the
largest complete string it can. The
next call to the function (providing
the int_chunk_len is the same at the
previous call) will start from the
character that could not be
completely extracted.

The function will split a multi-byte
string into smaller strings that hold
only complete multi-byte characters.
This is primarily meant for storing
large strings into several smaller
database fields.

The int_chunk_len in all calls to the
split function on the same string
must be the same.

See the example that follows this table.

substr(string_message,
int_startpos, int_len)

Extracts a substring, starting at the
position specified in the second
parameter, for the number of
characters specified by the third
parameter. The string is indexed from
1.

substr(’abcdefg’, 2, 3) returns bcd, starting at
the second character, returning the next 3.

to_char(argument [,
’conversion_spec’])

Converts the argument to a string.
The argument can be of any data
type except a string.

The comma (,) is required only if a
conversion string is specified.

If the argument is a time type, you
can specify a second argument
consisting of a conversion
specification to format the output.
This format is defined in reference
date/time format section. The default
format is EEE MMM dd HH:mm:ss yyyy
or in POSIX format %a %b %d %T %Y.
Note that the POSIX format with % is
deprecated.

to_char(73) returns 73

to_char(FirstOccurrence) returns a string such
as Thu Dec 11 16:02:05 2003

to_char(LastOccurrence, ’%Y’) returns a string
such as 2010

Chapter 5. ObjectServer SQL 189

Table 47. ObjectServer functions (continued)

Function Description Example

to_int(’argument’) Converts the argument to an integer.
The argument can be of any data
type except integer.

This function strips any leading
white space from the argument, and
then scans the remaining string. The
scan stops when it encounters a
character that cannot be converted to
a decimal character, or when it
reaches the end of the string,
whichever happens first. When the
scan stops, the function converts the
characters to their decimal value, or
returns 0 if it failed to encounter any
characters that could be converted to
decimal.

to_int('73') returns 73

to_int('3F') returns 3

to_int('UK') returns 0

to_int('F3') returns 0

to_real(’argument’) Converts the argument to a 64-bit
real number. The argument can be of
any data type except real.

This function strips any leading
white space from the argument, and
then scans the remaining string. The
scan stops when it encounters a
character that cannot be converted to
a decimal character, or when it
reaches the end of the string,
whichever happens first. When the
scan stops, the function converts the
characters to their decimal value, or
returns 0 if it failed to encounter any
characters that could be converted to
decimal.

to_real(’7.3’) returns 7.300000

to_real(’3F’) returns 3.000000

to_real(’UK’) returns 0

to_real('F3') returns 0

to_time(argument
[,’conversion_spec’])

to_date(argument
[,’conversion_spec’])

Converts the argument to a time
type. The argument can be of any
data type except a time type.

The comma (,) is required only if a
conversion string is specified.

If the argument is a string type, you
can specify a second argument
consisting of a conversion
specification to format the output.
The default format is EEE MMM dd
HH:mm:ss yyyy or in POSIX format %a
%b %d %T %Y. Note that the POSIX
format with % is deprecated.

update mytab set my_utc_col = to_time(’Thu
Dec 11 16:00:00 2003’)

190 IBM Tivoli Netcool/OMNIbus: Administration Guide

Table 47. ObjectServer functions (continued)

Function Description Example

to_unsigned(argument) Converts the argument to a 64-bit
unsigned integer. The argument can
be of any data type except a 64-bit
unsigned integer.

This function strips any leading
white space from the argument, and
then scans the remaining string. The
scan stops when it encounters a
character that cannot be converted to
a decimal character, or when it
reaches the end of the string,
whichever happens first. When the
scan stops, the function converts the
characters to their decimal value, or
returns 0 if it failed to encounter any
characters that could be converted to
decimal.

to_unsigned(’73’) returns 73

to_unsigned(73) returns 73

to_unsigned(’UK’) returns 0

to_unsigned('F3') returns 0

upper(string) Converts a character string argument
into uppercase characters.

upper(’Vancouver’) returns VANCOUVER

year(time) Takes a time argument and extracts
the year as an integer. If no argument
is specified, the argument is assumed
to be the current time.

select year(LastOccurrence) from mytab;

Example: Usage of split_multi-byte
for each row res_filter in catalog.restrictions where

res_filter.RestrictionName = rf_users.RestrictionName
begin

-- Populate master.profile with the new row.
-- Cut up the filter text into 255 byte chunks
update master.profiles set HasRestriction = 1,
Restrict1 = split_multibyte(res_filter.ConditionText, 1, 255),
Restrict2 = split_multibyte(res_filter.ConditionText, 2, 255),
Restrict3 = split_multibyte(res_filter.ConditionText, 3, 255),
Restrict4 = split_multibyte(res_filter.ConditionText, 4, 255)
Where UID = rf_users.GranteeID;

end;

In this example:

Restrict1 is assigned at most 255 bytes from res.filter.ConditionText from byte 1

Restrict2 is assigned at most 255 bytes from res.filter.ConditionText from byte (2-1)
* 255

Restrict1 is assigned at most 255 bytes from res.filter.ConditionText from byte (3-1)
* 255

Restrict1 is assigned at most 255 bytes from res.filter.ConditionText from byte (4-1)
* 255

Chapter 5. ObjectServer SQL 191

Related reference:
“alerts.status table” on page 357
The alerts.status table contains status information about problems that have been
detected by probes.
“master.class_membership table” on page 371
The master.class_membership table supports the mapping of Tivoli Enterprise
Console® classes to Tivoli Netcool/OMNIbus classes, and stores class membership
information. This table is used with the instance_of() SQL function.

Expressions
An expression is a syntactic combination of values and operations combined to
compute new values. Expressions can be simple or complex.

Simple expressions

A simple expression is a single constant or variable value, column name, or
variable reference. This can be any of the following entities:
v A quoted string (’Node XB1’)
v A number (9)
v A column name (Severity)
v An ObjectServer property (ServerName)
v An environment variable (NCHOME)
v A variable that holds a temporary value in a procedure or a trigger

Complex expressions

A complex expression is created from simple expressions combined using operators
(Severity - 1) and SQL functions (get_prop_value(ServerName)). You can combine
simple or complex expressions with other simple or complex expressions to create
increasingly complex expressions, such as -(Severity + Tally).

Note: Complex expressions are subject to data type constraints. For example, the
expression 5 * ’Node XB1’ is not valid because you cannot multiply an integer and
a string.
Related reference:
“Specifying data types for columns” on page 162
Each column value in the ObjectServer has an associated data type. The data type
determines how the ObjectServer processes the data in the column. For example,
the plus operator (+) adds integer values or concatenates string values, but does
not act on Boolean values.

Conditions
A condition is a combination of expressions and operators that evaluate to TRUE
or FALSE.

You can use conditions to search, filter, and test rows in:
v Restriction filters
v The WHERE clause of the SELECT, UPDATE, and DELETE commands
v The HAVING clause of the SELECT GROUP BY command
v The WHEN clause in triggers

192 IBM Tivoli Netcool/OMNIbus: Administration Guide

v The IF THEN ELSE, CASE WHEN, and FOR EACH ROW statements in
procedures and triggers

Conditions can contain comparison operators (Severity < 3), logical operators
(NOT(Is_Enabled)), and list comparison operators (Severity IN ANY(0,5)).

Valid conditions are shown in the following list:
TRUE | FALSE
(condition)
NOT condition
condition AND condition
condition OR condition
expression operator expression
expression operator ANY (expression, ...)
expression operator ALL (expression, ...)
expression[NOT] IN(subquery)
expression operator ANY (subquery)
expression [NOT] IN (expression, ...)
expression [NOT] LIKE regexp_pattern
expression [NOT] LIKE ANY (regexp_pattern, ...)
expression [NOT] LIKE ALL (regexp_pattern, ...)

Note: The ANY and ALL operators are not supported in subqueries.

You can combine conditions into increasingly complex conditions.

Example
(Severity > 4) AND (Node = ’node%’)

The following example shows the use of a condition in a subquery:
select * from alerts.status where Serial in (select Serial from alerts.journal);

Related concepts:
“Binary comparison operators” on page 181
Use binary comparison operators to compare numeric and string values for
equality and inequality.
“List comparison operators” on page 183
Use list comparison operators to compare a value to a list of values.
“Logical operators” on page 184
You can use logical operators on Boolean values to form expressions that resolve to
TRUE or FALSE.
“Expressions” on page 192
An expression is a syntactic combination of values and operations combined to
compute new values. Expressions can be simple or complex.
Related reference:
“Creating database triggers (CREATE TRIGGER command)” on page 233
Use the CREATE TRIGGER command to create database triggers that fire when a
modification or attempted modification to an ObjectServer table occurs (or when a
modification or attempted modification to a view affects a base table).

Chapter 5. ObjectServer SQL 193

Querying and manipulating data using ObjectServer SQL
You can use data manipulation language (DML) commands to query and modify
data in existing tables, views, and files.

ObjectServer SQL provides the following commands for manipulating data.

Table 48. ObjectServer objects and associated DML commands

ObjectServer object Allowed DML commands

TABLE SELECT

INSERT

UPDATE

DELETE

DESCRIBE

SVC

VIEW SELECT

DESCRIBE

SVC

FILE WRITE INTO

Tip: Restriction filters are automatically applied in SELECT, INSERT, UPDATE,
and DELETE commands.

Inserting a new row of data into a table (INSERT command)
Use the INSERT command to insert a new row of data into an existing table.

Syntax
INSERT INTO [database_name.]table_name
[(column_name,...)] VALUES (expression,...);

You must specify a value for every primary key column in the table.

If you are inserting values for every column in the row, specify the VALUES
keyword followed by a comma-separated list of column values in parentheses.
Enter the values in sequential column order.

If you are not inserting values for every column in the row, specify a
comma-separated list of columns being inserted in parentheses, followed by the
VALUES keyword, followed by a comma-separated list of column values in
parentheses. Enter the values in the same sequence as the specified columns. All
other columns are populated with default values.

Tip: You cannot assign values to system-maintained columns such as Serial.

Example

To insert an alert into the mydb.mystatus table specifying the values in the
indicated columns, enter:

194 IBM Tivoli Netcool/OMNIbus: Administration Guide

insert into mydb.mystatus (Identifier, Severity, LastOccurrence)
values (’MasterMachineStats15’, 5, getdate);

Updating the data in table columns (UPDATE command)
Use the UPDATE command to update one or more columns in an existing row of
data in a table.

Syntax
UPDATE [database_name.]object_name
[VIA value_of_primary_key_column,...]
SET column_name = expression,...
[WHERE condition];

You can use column values in calculations. In the following example, Severity is
set to 0 when an alert has been acknowledged:
update status set Severity=(1-Acknowledged)*Severity;

You cannot update system-maintained columns such as Serial, or columns where
the NOMODIFY property is set to TRUE. When the NOMODIFY property is set to
TRUE, the value of a column cannot be changed after the initial INSERT command.

For other columns, or when the NOMODIFY property is set to FALSE, you can
update rows in a table using the WHERE clause or the VIA clause.

Using the WHERE clause

If you include a WHERE clause, only rows meeting the criteria specified in the
condition are updated. If no condition is specified in the WHERE clause, all rows
are updated.

The WHERE clause can perform the same functions that the VIA clause does in
earlier versions of Tivoli Netcool/OMNIbus. If the primary key is specified in the
WHERE clause, the ObjectServer will not perform a full table scan but will instead
directly access rows using the primary key. The following examples show some
uses of the WHERE clause.

To set the Severity to 0 for rows of the alerts.status table where the Node is equal
to Fred, enter:
update alerts.status set Severity = 0 where Node = ’Fred’;

To search for rows where the Severity is equal to 1 and the Node is equal to Fred,
and then set the Severity to 0 and change the Summary field to the string
“Discarded”, enter:
update alerts.status set Severity = 0, Summary = ’Discarded’
where Severity = 1 and Node = ’Fred’;

Using the VIA clause

The VIA clause was deprecated with Tivoli Netcool/OMNIbus V7.2 but it is still
valid. Its functions can now be performed by the WHERE clause.

If you know the value of the primary key for the row that you want to update,
you can specify the value using the VIA clause. If there is more than one primary
key column, the values must be specified in order and separated by commas (,).
String values must be enclosed in single quotes (’).

Chapter 5. ObjectServer SQL 195

If multiple rows are being updated, the primary key(s) for each row must be
enclosed in square brackets ([]) and separated by commas (,).

The VIA clause can be useful for documenting your SQL. For example, it can be
used to let the maintainer of triggers know that the UPDATE is being performed
using primary keys.

The following example shows how to update multiple primary keys using the
UPDATE VIA command:
update alerts.status via [’722Identifier722’],[’294Identifier294’] set Severity = 3;

Given a table with the following schema, Example 1 shows how to update a single
row in a table with multiple primary keys and Example 2 shows how to update
multiple rows (three in this case) in a table with multiple primary keys.

Example schema:
create table alerts.example persistent (col1 int primary key, col2 int primary key,
col3 int primary key, col4 int);

Example 1:
update alerts.example via 1,1,1 SET col4 = 10;

Example 2:
update alerts.example via [1,1,1],[2,2,2],[3,3,3] SET col4 = 33;

Related concepts:
“Conditions” on page 192
A condition is a combination of expressions and operators that evaluate to TRUE
or FALSE.
Related reference:
“Inserting a new row of data into a table (INSERT command)” on page 194
Use the INSERT command to insert a new row of data into an existing table.

Deleting rows of data from a table (DELETE command)
Use the DELETE command to delete one or more rows of data from an existing
table.

Syntax
DELETE FROM [database_name.]object_name
[VIA value_of_primary_key_column,...]
[WHERE condition];

Using the WHERE clause

If you include a WHERE clause, only rows meeting the criteria specified in the
condition are updated. If no condition is specified in the WHERE clause, all rows
are updated.

The WHERE clause can perform the same functions that the VIA clause does in
earlier versions of Tivoli Netcool/OMNIbus. If the primary key is specified in the
WHERE clause, the ObjectServer will not perform a full table scan but will instead
directly access rows using the primary key.

The following example removes all the rows of the alerts.status table where the
value of the Node field is equal to Fred:

196 IBM Tivoli Netcool/OMNIbus: Administration Guide

delete from alerts.status where Node = ’Fred’;

Using the VIA clause

The VIA clause was deprecated with Tivoli Netcool/OMNIbus V7.2 but it is still
valid. Its functions can now be performed by the WHERE clause.

If you know the value of the primary key for the row that you want to delete, you
can specify the value using the VIA clause. If there is more than one primary key
column, the values must be specified in order and separated by commas (,). String
values must be enclosed in single quotes (’).

If multiple rows are being updated, the primary key(s) for each row must be
enclosed in square brackets ([]) and separated by commas (,).

The VIA clause can be useful for documenting your SQL. For example, it can be
used to let the maintainer of triggers know that the DELETE is being performed
using primary keys.

The following example shows how to delete multiple primary keys using the
DELETE VIA command:
delete from alerts.status via [’722Identifier722’],[’294Identifier294’];

Related concepts:
“Conditions” on page 192
A condition is a combination of expressions and operators that evaluate to TRUE
or FALSE.

Retrieving data from a table or view (SELECT command)
Use the SELECT command to retrieve one or more rows, or partial rows, of data
from an existing table or view, and to perform grouping functions on the data.

You can use the SELECT command to perform the following actions:
v Retrieve data that matches a specified criteria (scalar SELECT)
v Return a single value that is based on a calculation on a number of rows

(aggregate SELECT)
v Group all rows that contain identical values in one or more columns, and

perform aggregate functions on the columns (group by SELECT)

Basic (scalar) SELECT
The scalar SELECT command retrieves columns and rows from a table based on
specified criteria.

Syntax
SELECT [SKIP number_of_rows_to_skip] [TOP num_rows] {*|scalar_column_expr
[AS alias_name],...}
FROM [database_name.]object_name
[WHERE condition]
[ORDER BY column_name_or_alias [ASC|DESC],...];

Fix Pack 1 Use the optional SKIP clause to specify that the first
number_of_rows_to_skip number of rows is excluded from the result set. You can use
an ORDER BY clause to exclude the highest or lowest result values. If you do not
specify an ORDER BY clause, rows are excluded in a non-deterministic manner.
You can use the SKIP clause and the TOP clause together to page results. If you

Chapter 5. ObjectServer SQL 197

use a SKIP clause with a value that is larger than the number of rows in the result
set, then no rows are returned. The SKIP clause is not allowed in aggregate select
statements or view select statements, or in select statements that contain subselect
clauses or an evaluate clause.

Use the optional TOP clause to display only the first num_rows number of rows of
the query results that match the selection criteria. If you include a TOP clause, you
must also include an ORDER BY clause to order (sort) the selected rows.

Use an asterisk (*) to retrieve all non-hidden columns in the table. Otherwise, you
can either specify a comma-separated list of columns that you want to retrieve, or
create virtual columns using:
v Simple expressions (for example, Severity)
v Complex expressions that contain math or string operators (for example,

Severity + Tally)
v Functions (for example, getdate - 60)

Following a column or virtual column, you can include the AS keyword followed
by an alias. This alias is a replacement heading for the column or virtual column
name, and is displayed in the query results. If you specify a column alias, use that
alias in any references in the ORDER BY clause. The maximum length of a column
name or alias is 40 characters.

If you include a WHERE clause, only rows satisfying the criteria specified in the
condition are returned.

Use the optional ORDER BY clause to display the results in sequential order
depending on the values of one or more column names, in either descending
(DESC) or ascending (ASC), order. If the ORDER BY clause is not specified, no
ordering is used. If you have specified a column alias by using the AS keyword,
use that alias in any references in the ORDER BY column list rather than the
corresponding column name.

Examples

The following example selects all rows of the alerts.status table where the Severity
is equal to 4:
select * from alerts.status where Severity = 4;

The following example selects all rows of the alerts.status table where the Node
contains the string terminal followed by any other characters. In this example,
regular expression syntax is used in the LIKE comparison. For information on
regular expression syntax used in the LIKE comparison, see the appendix on
regular expressions in the IBM Tivoli Netcool/OMNIbus User's Guide.
select * from alerts.status where Node like ’terminal.*’;

In the following example, the virtual column Severity + Tally is populated by
adding the values of the two columns together:
select Severity, Severity + Tally from alerts.status;

The following example is the same as the previous example, except that the virtual
column Severity + Tally is renamed Real_Severity:
select Severity, Severity + Tally as Real_Severity from alerts.status;

198 IBM Tivoli Netcool/OMNIbus: Administration Guide

Fix Pack 1 In the following example, the Node column is sorted in ascending order
and the first two rows are excluded from the result set:
select skip 2 Node from alerts.status order by Node asc;

Fix Pack 1 You can use the SKIP and TOP clauses together to page results. In the
following example, the Node column is sorted in ascending order, the first two
rows are excluded from the result set, and the top five results are selected:
select skip 2 top 5 Node from alerts.status order by Node asc;

Fix Pack 2

Using row variables in subselect clauses

A reference to a row variable in a subselect clause (that is, a nested SELECT
statement) is permitted only if the row variable is on a different nesting level.

For example, the following statement is not allowed:
create or replace procedure test1()
begin

for each row status_row in alerts.status where status_row.Identifier not in
(select status_row.Identifier from alerts.test_tab)

begin
....

end;
end;

The following statement is an example of what is allowed:
create or replace procedure test1()
begin

for each row t_group in catalog.trigger_groups
begin

for each row trig in catalog.trigger_stats where
trig.TriggerName in (select TriggerName from catalog.triggers

where GroupName = t_group.GroupName)
begin

...
end;

end;
end;

Related concepts:
“Conditions” on page 192
A condition is a combination of expressions and operators that evaluate to TRUE
or FALSE.
“Expressions” on page 192
An expression is a syntactic combination of values and operations combined to
compute new values. Expressions can be simple or complex.
“Functions” on page 186
A function processes a data item or items in an SQL command and returns a value.
“Math and string operators” on page 181
Use math operators to add, subtract, multiply, and divide numeric operands in
expressions. Use string operators to manipulate character strings (VARCHAR and
CHAR data types).

Chapter 5. ObjectServer SQL 199

Aggregate SELECT
An aggregate SELECT command performs a calculation on a number of rows and
returns a single value.

Syntax
SELECT aggr_expression [AS alias_name],...
FROM [database_name.]table_name
[WHERE condition];

The following aggregate functions (depicted by aggr_expression in the syntax) are
supported.

Table 49. Aggregate functions

Function Result returned

max(scalar_column_expr) This returns the maximum numeric value
for the column expression from the rows
that satisfy the SELECT condition.

min(scalar_column_expr) This returns the minimum numeric value for
the column expression from the rows that
satisfy the SELECT condition.

avg(scalar_column_expr) This returns the average numeric value for
the column expression from the rows that
satisfy the SELECT condition.

sum(scalar_column_expr) This returns the sum (total) of the numeric
values for the column expression from the
rows that meet the SELECT condition.

count(scalar_column_expr)

count(*)

This returns the total number of rows that
satisfy the SELECT condition.

dist(scalar_column_expr, value) This returns the total number of rows for
which the column equals the specified value.
The result of:

dist(scalar_column_expr, value)

is equivalent to:

SELECT count(scalar_column_expr) FROM
table_name WHERE scalar_column_expr =
value;

Following an aggregate expression, you can include the AS keyword followed by
an alias. This alias is a replacement heading for the aggregate expression, and is
displayed in the query results.

The maximum length of a column name or alias is 40 characters.

If you include a WHERE clause, only rows satisfying the criteria specified in the
condition are returned.

Examples

The following example returns the highest Severity value, the average Severity
value, and the number of rows for which the Severity is equal to 4:
select MAX(Severity), AVG(Severity), DIST(Severity, 4) from alerts.status;

200 IBM Tivoli Netcool/OMNIbus: Administration Guide

The following example returns the number of rows for which the value of Node is
myhost:
select DIST(Node, ’myhost’) from alerts.status;

The following examples perform comparisons by using the getdate function,
which returns the current time:
select MAX(getdate-LastOccurrence) from alerts.status;

select AVG((getdate-LastOccurrence)/60) as ResponseTime from alerts.status
where OwnerUID=34;

Related concepts:
“Conditions” on page 192
A condition is a combination of expressions and operators that evaluate to TRUE
or FALSE.
“Functions” on page 186
A function processes a data item or items in an SQL command and returns a value.

Group by SELECT
You can use a SELECT command with a GROUP BY clause to group all rows that
have identical values in a specified column or combination of columns, into a
single row. You can also find the aggregate value for each group of column values.

Syntax
SELECT [TOP num_rows] scalar_column_expr_and_aggr_column_expr [AS alias_name] ,...
FROM [database_name.]table_name
[WHERE condition]
GROUP BY scalar_column_expr_or_alias ,... [HAVING condition]
[ORDER BY aggr_expr_or_alias [{ ASC | DESC }] ,...];

The GROUP BY syntax combines scalar column expressions and aggregate
expressions. An asterisk (*) is allowed only in the COUNT(*) aggregate function.

Following a scalar or aggregate expression, you can include the AS keyword
followed by an alias. This alias is a replacement heading for the scalar column
expression or aggregate expression, and is displayed in the query results. You must
specify an alias for every virtual column. This enables you to reference it in the
GROUP BY clause. If you do not specify an alias for an aggregate expression, you
cannot reference it in the aggregate expression in the ORDER BY clause.

The maximum length of a column name or alias is 40 characters.

The GROUP BY clause gathers all of the rows together that contain data in the
specified columns and allows aggregate functions to be performed on these
columns based on column values. If you have specified a column alias using the
AS keyword, use that alias in the GROUP BY column list rather than the
corresponding column name or expression.

Note: The column list in the GROUP BY clause must match the column list being
selected, and must not contain any of the aggregate expressions.

The condition following the optional HAVING keyword is an expression or
expressions that returns a subset of rows of the table. Unlike other conditions in
ObjectServer SQL, those in the HAVING clause can include aggregate functions.

Use the optional ORDER BY clause to display the results in sequential order
depending on the values of one or more aggregate expressions, in either
descending (DESC) or ascending (ASC), order. If the ORDER BY clause is not

Chapter 5. ObjectServer SQL 201

specified, no ordering is used. You must use the alias for the aggregate expression
in the ORDER BY clause rather than the corresponding aggregate expression.

Examples

The following example returns the highest Severity value found for each node:
select Node, max(Severity) from alerts.status group by Node;

The following example returns the highest severity value found for each node
except the node named Sun1, ordered from lowest to highest maximum severity:
select Node, max(Severity) as MAX_Sev from alerts.status
where Node <> ’Sun1’ group by Node order by MAX_Sev;

The column alias for max(Severity), which is MAX_Sev, is displayed as the heading
in the query results.
Related concepts:
“Conditions” on page 192
A condition is a combination of expressions and operators that evaluate to TRUE
or FALSE.
Related reference:
“Basic (scalar) SELECT” on page 197
The scalar SELECT command retrieves columns and rows from a table based on
specified criteria.
“Aggregate SELECT” on page 200
An aggregate SELECT command performs a calculation on a number of rows and
returns a single value.

Logging information to ObjectServer files (WRITE INTO
command)

Use the WRITE INTO command to write logging information to ObjectServer files.
For example, you can use the command to write output from a trigger to a log file.
An ObjectServer file is a logical file, which has a corresponding file or set of files
on the physical file system.

The files have a defined maximum size. When this size is reached, a new file is
created. There is a maximum number of files. When the maximum size and
maximum number of files are exceeded, the files are rotated. During file rotation,
do not open the log files with exclusive write access (for example, by using
Microsoft Excel), because the ObjectServer cannot rotate the files.

Syntax
WRITE INTO file_name [VALUES] (expression, ...);

A carriage return follows each message.

Example

The following command adds a message to the physical file associated with the
ObjectServer file file1 each time a user connects to a database.
WRITE INTO file1 VALUES
(’User’, %user.user_name, ’connected to the system at’, getdate);

The %user.user_name user variable used in this example is only available in
procedures and triggers.

202 IBM Tivoli Netcool/OMNIbus: Administration Guide

Related concepts:
“Files” on page 175
ObjectServer files are user-defined storage objects for log or report data.
Related reference:
“Implicit user variables in procedures and triggers” on page 227
You can use user variables to access information about connected users within an
SQL expression in the body of a trigger or procedure.

Displaying details of columns in a table or view (DESCRIBE
command)

Use the DESCRIBE command to display information about the columns of the
specified table or view.

Syntax
DESCRIBE [database_name.]object_name;

The output for this command includes the column name, the data type (returned
as the ObjectServer ID), the length of the column, and whether the column is part
of a primary key (1 if it is, 0 if it is not).

Hidden columns are not displayed because they are maintained by the system, and
a typical user does not need to view or update them.

Example

Use the following command to display information about the columns in the
catalog.tables table:
describe catalog.tables;

Sample output for the preceding command is:
ColumnName Type Size Key
-------------------- --------- --------- ------------
TableName 2 40 1
DatabaseName 2 40 1
Status 0 4 0
NumDependents 12 4 0
TableID 0 4 0
TableKind 0 4 0
StorageKind 0 4 0
ServerID 0 4 0

Related reference:
“Specifying data types for columns” on page 162
Each column value in the ObjectServer has an associated data type. The data type
determines how the ObjectServer processes the data in the column. For example,
the plus operator (+) adds integer values or concatenates string values, but does
not act on Boolean values.

Chapter 5. ObjectServer SQL 203

Adding or updating service status data (SVC command)
Use the SVC command to add or update the state of a service status alert in the
service.status table for IBM Tivoli Composite Application Manager for Internet
Service Monitoring.

Syntax
SVC UPDATE ’name’ integer;

In this command, name is the name of the profile element generating the alert and
integer is its current status. Valid values for the service status are shown in the
following table. If you enter any other value, the service level is set to 3
(unknown).

Table 50. Service status levels

Integer Service status level

0 Good.

1 Marginal.

2 Bad.

3 Service level is unknown.

Example
svc update ’newservice’ 2;

Sending IDUC notifications to IDUC clients (IDUC FLUSH
command)

Use the IDUC FLUSH command to send IDUC notifications to IDUC clients.

Syntax
IDUC FLUSH destination

In this command:
v destination = spid

v spid = integer_expression (The literal client connection ID)

Example
create or replace trigger exmple_trigger
group default_triggers
enabled true
priority 2
on signal iduc_data_fetch
begin
for each row conn in iduc_system.iduc_stats
begin
IDUC FLUSH conn.connectionid;
end;
end;
go

204 IBM Tivoli Netcool/OMNIbus: Administration Guide

Changing the settings of the ObjectServer (ALTER SYSTEM command)
Use the ALTER SYSTEM command to change the default and current settings of
the ObjectServer by setting properties, shut down the ObjectServer, drop user
connections, or back up the ObjectServer.
v “Syntax”
v “Stopping ObjectServers”
v “Setting ObjectServer properties”
v “Dropping user connections”
v “Backing up ObjectServers”
v “Restoring ObjectServers” on page 206

Syntax
ALTER SYSTEM
{
SHUTDOWN |
SET ’property_name’ = value [...] |
DROP CONNECTION connection_id [, ...] |
BACKUP ’directory_name’
}
;

Stopping ObjectServers

You can stop the ObjectServer with the ALTER SYSTEM SHUTDOWN command.

Setting ObjectServer properties

You can set ObjectServer properties with the SET keyword, followed by the
property name enclosed in quotation marks and a value for the property. You can
change more than one property in a single command. In addition to updating the
catalog.properties table, the changed properties are written to the properties file.

The following sample shows the SET keyword with the ALTER SYSTEM
command.
alter system set ’Auto.StatsInterval’ = 15 set ’AlertSecurityModel’ = 1;

alter system shutdown;

Dropping user connections

You can drop user connections with the ALTER SYSTEM DROP CONNECTION
command. Specify one or more connection identifiers in a comma-separated list.
You can find the identifiers for all current connections by querying the
catalog.connections system table. The ConnectionID column contains the
connection identifier.

Backing up ObjectServers

You can back up the ObjectServer with the ALTER SYSTEM BACKUP command.
Specify the path to an existing directory where you want to back up the files. This
value must be in quotation marks.The backup generates copies of the ObjectServer
.tab files in the specified directory. The directory cannot be the one in which
ObjectServer data files are stored, which is $NCHOME/omnibus/db/server_name by
default.

Chapter 5. ObjectServer SQL 205

Tip: The triggers in the automatic_backup_system trigger group, defined in the
$NCHOME/omnibus/etc/automation.sql file, use the ALTER SYSTEM BACKUP
command to provide an automatic backup facility. The automatic_backup trigger is
disabled by default; you must enable it to create backups automatically. You can
also customize this trigger to suit your environment. For example, you can change
the number of backups saved.

Restoring ObjectServers

To recover the ObjectServer to the point in time at which the BACKUP command
was issued, copy the ObjectServer .tab files into the ObjectServer data file
directory. You can use the backup files only on a computer that has the same
operating system as the computer on which the files were created.
Related concepts:
“Checkpoint file creation” on page 27
Checkpoint files are generated for each persistent memstore. Only persistent
memstores are checkpointed.
Related reference:
“ObjectServer properties and command-line options” on page 3
Use the ObjectServer properties or command-line options to configure settings for
the ObjectServer. To avoid errors, add as many properties as possible to the
properties file rather than using the command-line options. Additional utilities are
provided that you can use to encrypt the property values.
“Modifying a trigger (ALTER TRIGGER command)” on page 256
Use the ALTER TRIGGER command to change the settings of an existing trigger.
You can change more than one setting in a single ALTER TRIGGER command.

Setting the default database (SET DATABASE and USE DATABASE
commands)

Use the SET DATABASE or USE DATABASE command to set a database as the
default for an SQL interactive interface nco_sql session. These two commands
perform the same function.

Restriction: You cannot use this command in triggers or procedures.

After you set the default database with the SET DATABASE or USE DATABASE
command, you can specify an object name without preceding it with the database
name. The default database setting lasts for the length of the session in which it is
set.

Syntax
{ SET | USE } DATABASE database_name;

Note: The default database is not applied in the CREATE VIEW and DROP VIEW
commands. If no database name is specified in these commands, the view is
always created or dropped in the alerts database.

Examples
use database newthings;

set database mydb;

206 IBM Tivoli Netcool/OMNIbus: Administration Guide

Verifying your SQL syntax (CHECK STATEMENT command)
The CHECK STATEMENT command parses and checks the syntax of the SQL
commands enclosed in quotation marks and returns either a success message or a
description of any errors.

Syntax
CHECK STATEMENT ’command; command; ...’;

Because the CHECK STATEMENT command does not run the SQL commands,
runtime errors are not detected. Additionally, some spurious errors may be
displayed if there is a series of commands that relies on the preceding commands
being run.

Creating, modifying, and deleting users, groups, and roles
You can use SQL commands to organize collections of users into groups and then
assign roles to each group to control access to ObjectServer objects. You can create,
modify, and drop users, groups, and roles.

Permissions control access to objects and data in the ObjectServer. By combining
one or more permissions into roles, you can manage access quickly and efficiently.

Each user is assigned to one or more groups. You can then assign groups
permission to perform actions on database objects by granting one or more roles to
the group. You can create logical groupings such as super users or system
administrators, physical groupings such as London or New York NOCs, or any
other groupings to simplify your security setup.

For example, creating automations requires knowledge of Tivoli Netcool/OMNIbus
operations and the way a particular ObjectServer is configured. You do not
typically want all of your users to be allowed to create or modify automations.
One solution is to create a role named AutoAdmin, with permissions to create and
alter triggers, trigger groups, files, SQL procedures, external procedures, and
signals. You can then grant that role to a group of administrators who will be
creating and updating triggers.

Default groups and roles for network management operators and administrators
are defined in the security.sql SQL script. You can also use this script as a
template to create your own groups and roles.

Creating a user (CREATE USER command)
Use the CREATE USER command to add a user to the ObjectServer.

Syntax
CREATE USER ’user_name’
[ID identifier]
FULL NAME ’full_user_name’
[PASSWORD ’password’ [ENCRYPTED]]
[PAM { TRUE | FALSE }];

The user_name is a text string containing a unique user name for the user being
added. This name can be up to 64 characters in length. If the user is to be
externally authenticated, for example, in a Lightweight Directory Access Protocol
(LDAP) repository or by using Pluggable Authentication Modules (PAM), specify
the user name that is stored in the external authentication repository.

Chapter 5. ObjectServer SQL 207

Note: User names are case-sensitive, and must be enclosed in quotation marks.
Any leading or trailing whitespace is discarded.

The identifier is an integer value that uniquely identifies the user. If you do not
specify an identifier, one is automatically assigned. The identifier for the root user
is 0. The identifier for the nobody user is 65534. Identifiers for other users can be
set to any value between 1 and 2147483647.

The full_user_name is a text string containing the full name of the user.

You can specify the user password using the PASSWORD keyword. The default is
an empty string. If you add the keyword ENCRYPTED, the password is assumed
to be encrypted. No password is required for an externally-authenticated user.

To specify that the user is externally authenticated, set PAM to TRUE. The
Sec.ExternalAuthentication ObjectServer property must also be set to either PAM
or LDAP, as appropriate for your authentication system. If PAM is set to FALSE or
Sec.ExternalAuthentication is set to none, the user cannot be authenticated
externally. If you want to store the user name and associated password in the
ObjectServer, and to perform ObjectServer authentication, set PAM to FALSE. For
more information about PAM or LDAP, see the IBM Tivoli Netcool/OMNIbus
Installation and Deployment Guide.

Example
create user ’joe’ id 1 full name ’Joseph R. User’;

Related reference:
“ObjectServer properties and command-line options” on page 3
Use the ObjectServer properties or command-line options to configure settings for
the ObjectServer. To avoid errors, add as many properties as possible to the
properties file rather than using the command-line options. Additional utilities are
provided that you can use to encrypt the property values.

Modifying the details of an existing user (ALTER USER
command)

Use the ALTER USER command to change the settings, such as the password, for
the specified user. You can change more than one setting in a single ALTER USER
command.

Syntax
ALTER USER ’user_name’
SET PASSWORD ’password’ [AUTHORIZE PASSWORD ’old_password’] [ENCRYPTED]
SET FULL NAME ’full_user_name’
SET ENABLED { TRUE | FALSE }
SET PAM { TRUE | FALSE }
ASSIGN [RESTRICTION] FILTER restriction_filter_name
REMOVE [RESTRICTION] FILTER restriction_filter_name ;

The user_name is a text string containing the unique user name for the user being
modified. This name cannot be changed.

Use the PASSWORD setting to change the password for the specified user. Note
that you cannot change the password of a user that is externally authenticated in
an LDAP system. You can change the password of a user that is externally
authenticated in a PAM system only if the external PAM system has been

208 IBM Tivoli Netcool/OMNIbus: Administration Guide

configured to allow this. If allowed to change the password of a
PAM-authenticated user, you must also use the AUTHORIZE PASSWORD
keywords to specify the old password.

Use the ENABLED setting to activate (TRUE) or deactivate (FALSE) the specified
user. An activated user has login access to the system.

Set PAM to TRUE to enable the user to be externally authenticated. The
Sec.ExternalAuthentication ObjectServer property must also be set to either PAM
or LDAP, as appropriate for your authentication system. If PAM is set to FALSE or
Sec.ExternalAuthentication is set to none, the user cannot be authenticated
externally. If you want to perform ObjectServer authentication, set PAM to FALSE.
For more information about PAM or LDAP, see the IBM Tivoli Netcool/OMNIbus
Installation and Deployment Guide.

Use the ASSIGN or REMOVE RESTRICTION FILTER settings to assign or remove
the restriction filters that apply to the user. Only one restriction filter per table can
be assigned to a user.

Example
alter user ’joe’ set password ’topsecret’;

Related concepts:
“Restriction filters” on page 174
A restriction filter provides a way to restrict the rows that are displayed when a
user views a table.
Related reference:
“ObjectServer properties and command-line options” on page 3
Use the ObjectServer properties or command-line options to configure settings for
the ObjectServer. To avoid errors, add as many properties as possible to the
properties file rather than using the command-line options. Additional utilities are
provided that you can use to encrypt the property values.

Deleting a user (DROP USER command)
Use the DROP USER command to delete the specified user.

Syntax
DROP USER ’user_name’;

The user_name is a text string containing the unique user name for the user being
dropped.

Example
drop user ’joe’;

Chapter 5. ObjectServer SQL 209

Creating a group (CREATE GROUP command)
Use the CREATE GROUP command to create a group of one or more users.

Syntax
CREATE GROUP ’group_name’
[ID identifier]
[COMMENT ’comment_string’]
[MEMBERS ’user_name’, ...] ;

The group_name is a text string containing a unique name for the group being
created. This name can be up to 64 characters in length.

Note: Group names are case-sensitive, and must be enclosed in quotation marks.
Any leading or trailing white space is discarded.

The identifier is an integer value that uniquely identifies the group. If you do not
specify an identifier, one is automatically assigned. Identifiers 0 through 7 are
reserved for system groups. Identifiers for other groups can be set to any value
between 8 and 2147483647.

Use the optional COMMENT setting to add a description of the group you are
creating.

Use the MEMBERS keyword to specify the user names of one or more users that
you want to add as group members.

Example
create group ’AutoAdmin’ id 3 COMMENT ’Group to manage Automations’

members ’joe’, ’bob’;

Modifying the details of an existing group (ALTER GROUP
command)

Use the ALTER GROUP command to change user settings for the specified group.
You can change more than one setting in a single ALTER GROUP command.

Syntax
ALTER GROUP ’group_name’
SET COMMENT ’comment_string’
ASSIGN [RESTRICTION] FILTER restriction_filter_name
REMOVE [RESTRICTION] FILTER restriction_filter_name
ASSIGN MEMBERS ’user_name’, ...
REMOVE MEMBERS ’user_name’, ... ;

The group_name is a text string containing the unique name of the group being
modified. You cannot change this name.

Use the SET COMMENT setting to modify the description of the group.

Use the ASSIGN or REMOVE RESTRICTION FILTER setting to assign or remove
restriction filters that apply to the group. Only one restriction filter per table can be
assigned to a group.

Use the ASSIGN or REMOVE MEMBERS setting to assign users as group
members, or remove users from the group.

210 IBM Tivoli Netcool/OMNIbus: Administration Guide

Example
alter group ’AutoAdmin’ assign members ’sue’;

Related concepts:
“Restriction filters” on page 174
A restriction filter provides a way to restrict the rows that are displayed when a
user views a table.

Deleting a group (DROP GROUP command)
Use the DROP GROUP command to delete the specified group.

Syntax
DROP GROUP ’group_name’;

The group_name is a text string containing the unique name of the group being
dropped.

Note: The default groups Normal, Administrator, and Super User provide group
row level security in the event list. These groups cannot be deleted or renamed.
These and other default groups are created by the security.sql script.

Example
drop group ’LondonAdmin’;

Creating a role (CREATE ROLE command)
Use the CREATE ROLE command to create a role, which is a collection of
permissions.

Syntax
CREATE ROLE ’role_name’
[ID identifier]
[COMMENT ’comment_string’];

The role_name is a text string containing the unique name of the role being created.
This name can be up to 64 characters in length.

Note: Role names are case-sensitive, and must be enclosed in quotation marks.
Any leading or trailing whitespace is discarded.

The identifier is an integer value that uniquely identifies the role. If you do not
specify an identifier, one is automatically assigned. The Normal role has the
identifier 3. The Administrator role has the identifier 2. The SuperUser role has the
identifier -1, and is granted all permissions on all objects. Identifiers for other roles
can be set to any value between 13 and 2147483647.

Use the optional COMMENT setting to add a description of the role you are
creating.

Default roles are created by the security.sql script.

Example
create role ’SuperAdmin’ id 500
comment ’only users with root access should be granted this role’;

Chapter 5. ObjectServer SQL 211

Related concepts:
“Using roles to assign permissions to users”
After you create a role, you must assign permissions to the role using the GRANT
command. You can then use the GRANT ROLE command to assign the role to one
or more groups. All users who are group members are automatically assigned the
permissions defined for that role.

Modifying the description of a role (ALTER ROLE command)
Use the ALTER ROLE command to modify the description of an existing role.

Syntax
ALTER ROLE ’role_name’ SET COMMENT ’comment_string’;

The role_name is a text string containing the unique name of the role being
modified. This name cannot be changed.

Use the COMMENT setting to modify the description of the role.

Example
alter role ’SuperAdmin’ set comment ’enhanced description of role’;

Using roles to assign permissions to users
After you create a role, you must assign permissions to the role using the GRANT
command. You can then use the GRANT ROLE command to assign the role to one
or more groups. All users who are group members are automatically assigned the
permissions defined for that role.

Assigning permissions to roles (GRANT command)
Use the GRANT command to assign system and object permissions to roles. System
permissions control the commands that can be run in the ObjectServer. Object
permissions control access to individual objects, such as tables.

Syntax for granting system permissions
GRANT system_permission,...
TO ROLE ’role_name’,...
[WITH GRANT OPTION];

The value of system_permission can be any of the following subcommands:
ISQL
ISQL WRITE
ALTER SYSTEM DROP CONNECTION
ALTER SYSTEM SHUTDOWN
ALTER SYSTEM BACKUP
ALTER SYSTEM SET PROPERTY
CREATE DATABASE
CREATE FILE
CREATE RESTRICTION FILTER
CREATE SQL PROCEDURE
CREATE EXTERNAL PROCEDURE
CREATE SIGNAL
CREATE TRIGGER GROUP
CREATE USER
CREATE GROUP
CREATE ROLE
ALTER USER
ALTER GROUP
ALTER ROLE
DROP USER

212 IBM Tivoli Netcool/OMNIbus: Administration Guide

DROP GROUP
DROP ROLE
GRANT ROLE
REVOKE ROLE

The role_name is a text string containing the unique name of the role or roles to
which you are assigning permissions.

The WITH GRANT OPTION option enables the roles to whom the permission is
granted to grant the permission to other roles.

Tip: You can query the catalog.security_permissions table to view information
about permissions. For example, to view each system permission, use the following
SQL command: SELECT * FROM catalog.security_permissions WHERE Object =
’SYSTEM’ ORDER BY Permission;

Example for granting system permissions
grant create database to role ’DDL_Admin’;

Syntax for granting object permissions
GRANT object_permission,... ON permission_object object_name
TO ROLE ’role_name’,...
[WITH GRANT OPTION];

You can assign one or more permissions to ObjectServer objects. Use
object_permission to define the SQL commands that authorized users can run on an
ObjectServer object of type permission_object. The object_name is a text string
containing the unique name of the object.

The owner of the object (its creator) automatically has the grant and revoke
permissions associated with that object, and can grant and revoke those
permissions to other roles. The following table lists the permissions that the owner
has for each object type. The owner can also grant these permissions to other users.

Table 51. Objects and associated permissions

Objects (permission_object) Permissions (object_permission)

DATABASE DROP

CREATE TABLE

CREATE VIEW

TABLE DROP

ALTER

SELECT

INSERT

UPDATE

DELETE

CREATE INDEX

DROP INDEX

Chapter 5. ObjectServer SQL 213

Table 51. Objects and associated permissions (continued)

Objects (permission_object) Permissions (object_permission)

VIEW DROP

ALTER

SELECT

UPDATE

DELETE

TRIGGER GROUP DROP

ALTER

CREATE TRIGGER

TRIGGER DROP

ALTER

FILE DROP

ALTER

WRITE

SQL PROCEDURE

EXTERNAL PROCEDURE

DROP

ALTER

EXECUTE

SIGNAL DROP

ALTER

RAISE

RESTRICTION FILTER DROP

ALTER

The role_name is a text string containing the unique name of the role or roles to
which the permissions are being assigned.

The WITH GRANT OPTION option enables the roles to whom the permission is
granted to grant the permission to other roles.

Tip: In commands where you can replace an existing object by using the CREATE
OR REPLACE syntax, you need ALTER permission to replace an existing object.
Some objects can be altered only by using the CREATE OR REPLACE syntax; for
example, there is no ALTER VIEW command, but you can replace an existing view
if you have ALTER permission on the view.

Example for granting object permissions
grant drop on database testdb to role ’DDL_Admin’;

Related reference:
“Revoking permissions from roles (REVOKE command)” on page 216
Use the REVOKE command to revoke system and object permissions from roles.

214 IBM Tivoli Netcool/OMNIbus: Administration Guide

Inheritance of object permissions
When a new object is created, permissions are automatically granted on the new
object, based on the permissions currently granted on its parent.

The following table lists the parent of each ObjectServer object.

Table 52. Inheritance of object permissions

Parent object Child objects

System DATABASE

TRIGGER GROUP

FILE

SQL PROCEDURE

EXTERNAL PROCEDURE

SIGNAL

RESTRICTION FILTER

DATABASE TABLE

VIEW

TABLE INDEX

TRIGGER GROUP TRIGGER

For example, if SuperAdmin has CREATE_DATABASE permission, and
LondonAdmin creates a database, by default SuperAdmin has all object
permissions on the database LondonAdmin created.

If the permissions on the parent are changed after the child object is created, this
has no effect on the permissions on the child.

Assigning roles to groups (GRANT ROLE command)
After you have created roles as collections of permissions, you can assign the roles
to groups and revoke the roles from groups. Use the GRANT ROLE command to
assign roles to groups.

Role assignments take effect in the next client session.

Syntax
GRANT ROLE ’role_name’,...
TO GROUP ’group_name’,...;

Each role_name is a text string containing the unique name of a role being assigned.

Each group_name is the name of a group to which the role or roles are being
assigned.

Example
grant role ’AutoAdmin’ to group ’LondonAdministrators’;

Chapter 5. ObjectServer SQL 215

Related reference:
“Revoking roles from groups (REVOKE ROLE command)” on page 218
Use the REVOKE ROLE command to revoke roles from groups.

Revoking permissions from roles (REVOKE command)
Use the REVOKE command to revoke system and object permissions from roles.

Syntax for revoking system permissions
REVOKE system_permission,...
FROM ROLE ’role_name’,... ;

The following list shows each system_permission that can be revoked from a role:
ISQL
ISQL WRITE
ALTER SYSTEM DROP CONNECTION
ALTER SYSTEM SHUTDOWN
ALTER SYSTEM BACKUP
ALTER SYSTEM SET PROPERTY
CREATE DATABASE
CREATE FILE
CREATE RESTRICTION FILTER
CREATE SQL PROCEDURE
CREATE EXTERNAL PROCEDURE
CREATE SIGNAL
CREATE TRIGGER GROUP
CREATE USER
CREATE GROUP
CREATE ROLE
ALTER USER
ALTER GROUP
ALTER ROLE
DROP USER
DROP GROUP
DROP ROLE
GRANT ROLE
REVOKE ROLE

Each role_name is a text string containing the unique name of a role from which the
permission is being revoked.

Example for revoking system permissions
revoke create table from role ’DDL_Admin’;

Syntax for revoking object permissions
REVOKE object_permission,...
ON permission_object object_name
FROM ROLE ’role_name’,... ;

You can revoke one or more permissions for ObjectServer objects. Use
object_permission to specify the SQL commands that you want to revoke for an
ObjectServer object of type permission_object. The object_name is a text string
containing the unique name of the object.

Details of each object and associated permissions that you can revoke are shown in
the following table.

216 IBM Tivoli Netcool/OMNIbus: Administration Guide

Table 53. Objects and associated permissions

Objects (permission_object) Permissions (object_permission)

DATABASE DROP

CREATE TABLE

CREATE VIEW

TABLE DROP

ALTER

SELECT

INSERT

UPDATE

DELETE

CREATE INDEX

DROP INDEX

VIEW DROP

ALTER

SELECT

UPDATE

DELETE

TRIGGER GROUP DROP

ALTER

CREATE TRIGGER

TRIGGER DROP

ALTER

FILE DROP

ALTER

WRITE

SQL PROCEDURE

EXTERNAL PROCEDURE

DROP

ALTER

EXECUTE

SIGNAL DROP

ALTER

RAISE

RESTRICTION FILTER DROP

ALTER

Chapter 5. ObjectServer SQL 217

Each role_name is a text string containing the unique name of a role from which the
permission is being revoked.

Note: The REVOKE command does not cascade within the permission hierarchy.
For example, if you revoke the CREATE TABLE permission from the SuperAdmin
role after SuperAdmin has granted this permission to the LondonAdministrators
role, the LondonAdministrators role retains the CREATE TABLE permission.

Example for revoking object permissions
revoke drop on database testdb from role ’DDL_Admin’;

Related reference:
“Assigning permissions to roles (GRANT command)” on page 212
Use the GRANT command to assign system and object permissions to roles. System
permissions control the commands that can be run in the ObjectServer. Object
permissions control access to individual objects, such as tables.

Revoking roles from groups (REVOKE ROLE command)
Use the REVOKE ROLE command to revoke roles from groups.

Syntax
REVOKE ROLE ’role_name’,...
FROM GROUP ’group_name’,... ;

Each role_name is a text string containing the unique name of a role being revoked.

Each group_name is the name of a group that will no longer be assigned the role or
roles.

Note: The REVOKE ROLE command does not cascade within the role hierarchy.
For example, if you revoke the AutoAdmin role from the SuperAdmin group after
SuperAdmin has granted the AutoAdmin role to the LondonAdministrators group,
the LondonAdministrators group still has the AutoAdmin role.

Example
revoke role ’AutoAdmin’ from group ’LondonAdministrators’;

Related reference:
“Assigning roles to groups (GRANT ROLE command)” on page 215
After you have created roles as collections of permissions, you can assign the roles
to groups and revoke the roles from groups. Use the GRANT ROLE command to
assign roles to groups.

Deleting a role (DROP ROLE command)
Use the DROP ROLE command to drop an existing role.

Syntax
DROP ROLE ’role_name’;

The role_name is a text string containing the unique name of the role being
dropped. When you drop a role, all of the related role permissions are dropped.

Example
drop role ’AutoAdmin’;

218 IBM Tivoli Netcool/OMNIbus: Administration Guide

Creating, running, and dropping procedures
A procedure is an executable SQL object that can be called to perform common
operations.

The types of procedures that you can create are:
v SQL procedures, which manipulate data in an ObjectServer database
v External procedures, which run an executable on a remote system

After you create a procedure in the ObjectServer, you can run the procedure from
the SQL interactive interface (nco_sql). You can also run the procedure in a trigger
by using the EXECUTE PROCEDURE command.

SQL procedures
An SQL procedure is a set of parameterized SQL commands, or code fragments,
with programming language constructs that you can use to perform complex tasks
on database objects.

You can create a procedure containing a logical set of commands, such as a set of
queries, updates, or inserts, that make up a task.

Procedures expand SQL syntax so that you can:
v Pass parameters into and out of a procedure
v Create local variables and assign values to them
v Perform condition testing
v Perform scanning operations over tables and views

Components of an SQL procedure
SQL procedures have the following major components: parameters, local variable
declarations, and procedure body.

Parameters are values that are passed into, or out of, a procedure. You declare the
parameters of the procedure when you create the procedure, and you specify what
values are passed as parameters when you run the procedure. The name of the
variable that contains a parameter is called a formal parameter, while the value of
the parameter when the procedure is run is called an actual parameter.

The values that you pass to the procedure must be of the same data type as in the
parameter declaration.

You can also create local variables for use within the procedure to hold and change
temporary values in the body of the procedure. Local variables and values are
always discarded when the procedure exits. For example, you can create an integer
counter as a local variable.

Note: Because both parameters and local variables contain data that can change,
both parameters and local variables are referred to as 'variables' within procedures.

The body of a procedure contains a set of statements that tests conditions and
manipulates data in the database.

Chapter 5. ObjectServer SQL 219

Related reference:
“Creating SQL procedures (CREATE PROCEDURE command)”
Use the CREATE PROCEDURE command to create SQL procedures.

Creating SQL procedures (CREATE PROCEDURE command)
Use the CREATE PROCEDURE command to create SQL procedures.

This command defines the structure and operation of the procedure, including the
types of parameter passed into, and out of, the procedure, and the local variables,
condition testing, row operations, and assignments that are performed in the
procedure.

Syntax
CREATE [OR REPLACE] PROCEDURE procedure_name
([

[IN | OUT | IN OUT] parameter_name
{ parameter_type | ARRAY OF parameter_type }, ...

])
[DECLARE variable_declaration;...[;]]
BEGIN
procedure_body_statement;...[;]
END

If there is a possibility that a procedure already exists with the same name as the
one you want to create, use the optional OR REPLACE keywords. If the procedure
exists, it is replaced by the one you are creating. If the procedure does not exist, a
new one is created.

The procedure_name must be unique within the ObjectServer and comply with the
ObjectServer naming conventions.

Following the procedure_name, specify the parameters that can be passed into, or
out of, the procedure, within parentheses (). You must include parentheses after
the procedure_name even if the procedure has no parameters.

Each procedure parameter has a mode, which can be IN, OUT, or IN OUT.
Depending on the mode that you choose for your parameters, you can use them in
different ways:
v An IN parameter is a read-only variable. You can use an IN parameter in

expressions to help calculate a value, but you cannot assign a value to the
parameter. If you do not want to change a variable value within the procedure,
use an IN parameter to pass the variable value into the procedure. This
parameter is used by default if you do not specify the parameter mode.

v An OUT parameter is a write-only variable. You can use an OUT parameter to
assign a value to the parameter, but you cannot read from it within the body of
the procedure. Therefore, you cannot use this type of parameter in an
expression. OUT parameters are useful for passing values that are computed
within a procedure, out of the procedure.

v An IN OUT parameter is a read and write variable, with none of the constraints
of an IN or OUT parameter. This parameter is useful for variables that you want
to change within the procedure, and pass out of the procedure.

The parameter_name must be unique within the procedure and comply with the
ObjectServer naming conventions.

220 IBM Tivoli Netcool/OMNIbus: Administration Guide

The parameter_type defines the type of data that the parameter can pass into, or out
of, the procedure. The data type can be any valid ObjectServer data type, except
VARCHAR or INCR.

An ARRAY OF parameter_type is an array of any valid parameter type.

In the optional DECLARE section of a procedure, you can define (declare) local
variables for use within a procedure. A local variable is a placeholder for values
used during the execution of the procedure. Use semicolons to separate local
variable declarations. Variable names must be unique within the procedure and
comply with the ObjectServer naming conventions. The variable_declaration can
include either of the following variable types:
v Simple variables:

variable_name variable_type

v Array variables:
variable_name variable_type [ARRAY] [integer]

A variable_type is any valid ObjectServer data type, except VARCHAR or INCR.
Define the size of an array by specifying an integer value greater than 1 in
square brackets.

Note: The square brackets in bold type around the integer value are required to
specify the size of the array; they do not indicate syntax notation for an optional
keyword or clause.

The body of a procedure is enclosed within the keywords BEGIN and END. You
can use the SET statement, IF THEN ELSE statement, CASE WHEN statement,
FOR EACH ROW loop, and FOR loop in the procedure body.

Example

In the following procedure declaration, the formal parameter is the variable
current_severity. When you run the procedure, you pass an actual parameter.
CREATE PROCEDURE calculate_average_severity
(IN current_severity INTEGER)

For example, in the following procedure call, the actual parameter is the value 5,
which is assigned to the formal parameter current_severity.
EXECUTE PROCEDURE calculate_average_severity(5);

Example
CREATE PROCEDURE add_or_concat
(IN counter INTEGER, IN one_char_string CHAR(1))

Example

In the following example, an array of integers is passed into the procedure and
used to calculate the average severity of a subset of alerts:
CREATE PROCEDURE calculate_average_severity
(IN severity_arr ARRAY OF INTEGER)

An array of integers is passed into the procedure when you run it. These integers
are assigned to an array named severity_arr.

Chapter 5. ObjectServer SQL 221

Example

To create a Boolean variable used in the procedure to indicate when a severity
exceeds a particular value:
DECLARE SeverityTooHigh BOOLEAN;

To create an array of 20 integer values used in the procedure to store node names:
DECLARE NodeNameArray INTEGER [20];

Related concepts:
“Naming conventions for ObjectServer objects” on page 156
When issuing SQL commands, you must adhere to the naming conventions
defined for ObjectServers.
“Components of an SQL procedure” on page 219
SQL procedures have the following major components: parameters, local variable
declarations, and procedure body.
“Expressions” on page 192
An expression is a syntactic combination of values and operations combined to
compute new values. Expressions can be simple or complex.
Related reference:
“Specifying data types for columns” on page 162
Each column value in the ObjectServer has an associated data type. The data type
determines how the ObjectServer processes the data in the column. For example,
the plus operator (+) adds integer values or concatenates string values, but does
not act on Boolean values.
“How to construct an SQL procedure body statement”
The body of an SQL procedure contains a set of SQL statements and programming
constructs that manipulate data in the ObjectServer.

How to construct an SQL procedure body statement:

The body of an SQL procedure contains a set of SQL statements and programming
constructs that manipulate data in the ObjectServer.

Syntax
CREATE [OR REPLACE] PROCEDURE procedure_name ([procedure_parameter,...])
[DECLARE variable_declaration;...[;]]
BEGIN
procedure_body_statement;...[;]

END

This topic describes only the entries required for the body of a procedure
(procedure_body_statement), which is enclosed between the keywords BEGIN and
END.

In the body of a procedure, you must separate each statement, except the last one,
by a semicolon.

Statements in the procedure can include SQL commands and additional
programming constructs.

You can run the following SQL commands in a procedure:
ALTER FILE
ALTER SYSTEM BACKUP
ALTER SYSTEM SET
ALTER SYSTEM DROP CONNECTION
ALTER TRIGGER

222 IBM Tivoli Netcool/OMNIbus: Administration Guide

ALTER TRIGGER GROUP
ALTER USER
UPDATE
INSERT
DELETE
WRITE INTO
RAISE SIGNAL
{ EXECUTE | CALL } PROCEDURE

The user creating the procedure must have appropriate permissions to run the
commands in the procedure body.

Attention: You cannot have circular dependencies in procedures or triggers; for
example, you must not create a procedure that calls a procedure which then calls
the original procedure.

You can use the following additional programming constructs in the procedure
body:
v SET assignment statement
v IF THEN ELSE statement
v CASE WHEN statement
v FOR EACH ROW loop
v FOR loop
Related reference:
“Creating SQL procedures (CREATE PROCEDURE command)” on page 220
Use the CREATE PROCEDURE command to create SQL procedures.
“Implicit user variables in procedures and triggers” on page 227
You can use user variables to access information about connected users within an
SQL expression in the body of a trigger or procedure.
“SET statement” on page 224
When constructing the body of an SQL procedure, you can use a SET assignment
statement to write the value of an expression to a variable or parameter.
“IF THEN ELSE statement” on page 224
When constructing the body of an SQL procedure, you can use the IF THEN ELSE
statement to perform one or more actions based on the specified conditions.
“CASE WHEN statement” on page 225
When constructing the body of an SQL procedure, you can use the CASE WHEN
statement to perform one or more actions based on a condition. If the condition is
not met, you can optionally perform a different action.
“FOR EACH ROW loop” on page 225
When constructing the body of an SQL procedure, you can use the FOR EACH
ROW loop to perform actions on a set of rows that match a certain condition.
“FOR loop” on page 226
When constructing the body of an SQL procedure, you can use the FOR loop to
perform actions a set number of times, based on a counter variable.

Chapter 5. ObjectServer SQL 223

SET statement:

When constructing the body of an SQL procedure, you can use a SET assignment
statement to write the value of an expression to a variable or parameter.

Syntax
SET { parameter_name | variable_name } = expression

You can assign a value to a parameter, variable, or a row reference in a FOR EACH
ROW loop.

The expression is any valid expression.

Note: The value returned by the expression must be of a type compatible with the
variable into which you write the value.
Related concepts:
“Expressions” on page 192
An expression is a syntactic combination of values and operations combined to
compute new values. Expressions can be simple or complex.
Related reference:
“How to construct an SQL procedure body statement” on page 222
The body of an SQL procedure contains a set of SQL statements and programming
constructs that manipulate data in the ObjectServer.

IF THEN ELSE statement:

When constructing the body of an SQL procedure, you can use the IF THEN ELSE
statement to perform one or more actions based on the specified conditions.

Syntax
IF condition THEN action_command_list
[ELSEIF condition THEN action_command_list]
...
[ELSE action_command_list]
END IF;

If the first condition is met (evaluates to TRUE), the commands following the
THEN keyword are run in sequence until an ELSEIF, ELSE, or END IF is reached.
If the first condition is not met and there is an ELSEIF statement for which the
condition is met, the commands following that ELSEIF statement are run until the
next keyword is reached. If an ELSE statement exists, and no previous conditions
have been met, the statements following the ELSE statement are run until the END
IF statement is reached.
Related concepts:
“Conditions” on page 192
A condition is a combination of expressions and operators that evaluate to TRUE
or FALSE.
Related reference:
“How to construct an SQL procedure body statement” on page 222
The body of an SQL procedure contains a set of SQL statements and programming
constructs that manipulate data in the ObjectServer.

224 IBM Tivoli Netcool/OMNIbus: Administration Guide

CASE WHEN statement:

When constructing the body of an SQL procedure, you can use the CASE WHEN
statement to perform one or more actions based on a condition. If the condition is
not met, you can optionally perform a different action.

Syntax
CASE

WHEN condition THEN action_command_list
...
[ELSE action_command_list]
END CASE;

If the first condition is met (evaluates to TRUE), the statements following the
THEN keyword are run in sequence until a WHEN, ELSE, or END CASE is
reached. Otherwise, if there is any WHEN statement for which the condition is
met, the statements following the THEN keyword are run until a WHEN, ELSE, or
END CASE is reached. If no previous condition is met and there is an ELSE
statement, the statements following the ELSE statement are run until an END
CASE statement is reached.
Related concepts:
“Conditions” on page 192
A condition is a combination of expressions and operators that evaluate to TRUE
or FALSE.
Related reference:
“How to construct an SQL procedure body statement” on page 222
The body of an SQL procedure contains a set of SQL statements and programming
constructs that manipulate data in the ObjectServer.

FOR EACH ROW loop:

When constructing the body of an SQL procedure, you can use the FOR EACH
ROW loop to perform actions on a set of rows that match a certain condition.

Syntax
FOR EACH ROW variable_name in database_name.table_name
[WHERE condition]
BEGIN

action_command_list;
END;

In this statement, the variable name is declared implicitly as a row reference.
Therefore, you do not need to declare the variable at the start of the procedure.
This means that any changes made to the columns referenced by the variable
directly affect the referenced rows in the ObjectServer. When the END is reached, the
implicitly-declared variable is discarded and cannot be used elsewhere in the
procedure.

Only base tables (not views) can be updated in the FOR EACH ROW loop. You
cannot insert into the table being processed within the FOR EACH ROW loop.

If an error is encountered while the FOR EACH ROW loop is scanning for rows,
scanning is stopped. The exception to this behavior is if an error is encountered
from an ALTER SYSTEM DROP CONNECTION command: that is, if the client has
disconnected. In this case, the ALTER SYSTEM DROP CONNECTION command
logs an error message and the FOR EACH ROW command continues scanning.

Chapter 5. ObjectServer SQL 225

If you include a WHERE clause, only rows meeting the criteria that are specified in
the condition are returned.

A BREAK command exits from the current loop, and the next statement in the
procedure starts to run.

A CANCEL command stops the running of a procedure.

Attention: Do not use the CANCEL command when using a desktop
ObjectServer in DualWrite mode.

Example

The following example increases the severity of all alerts in the alerts.status table
that have a severity of 3 to a severity of 4.
FOR EACH ROW alert_row in alerts.status WHERE alert_row.Severity=3
BEGIN

SET alert_row.Severity = 4;
END;

When this statement runs, the ObjectServer reads each row of the alerts.status table
and tests to see if the value in the Severity column is 3. For each row that matches
this condition, the statements within the BEGIN and END are run, until all the
rows are processed.
Related concepts:
“Conditions” on page 192
A condition is a combination of expressions and operators that evaluate to TRUE
or FALSE.
Related reference:
“How to construct an SQL procedure body statement” on page 222
The body of an SQL procedure contains a set of SQL statements and programming
constructs that manipulate data in the ObjectServer.

FOR loop:

When constructing the body of an SQL procedure, you can use the FOR loop to
perform actions a set number of times, based on a counter variable.

Syntax
FOR counter = 1 to integer DO
BEGIN

action_command_list;
END;

A BREAK command exits from the current loop, and the next statement in the
procedure starts to run.

A CANCEL command stops the running of a procedure.

Attention: Do not use the CANCEL command when using a desktop
ObjectServer in DualWrite mode.

Example

The following procedure updates each row of the alerts.status table and sets the
acknowledged flag to TRUE:

226 IBM Tivoli Netcool/OMNIbus: Administration Guide

CREATE PROCEDURE ACKNOWLEDGE_TOOL(ids ARRAY OF CHAR(255))
DECLARE

k INTEGER;
BEGIN

FOR k = 1 TO array_len(ids) DO
BEGIN
UPDATE alerts.status VIA (ids[k]) SET Acknowledged = TRUE;
END;

END;

Related reference:
“How to construct an SQL procedure body statement” on page 222
The body of an SQL procedure contains a set of SQL statements and programming
constructs that manipulate data in the ObjectServer.

Implicit user variables in procedures and triggers:

You can use user variables to access information about connected users within an
SQL expression in the body of a trigger or procedure.

Use the %user notation to specify user variables, for example:
%user.attribute_name. The % symbol indicates that you are referencing an implicit
variable. The user keyword references the current user.

Tip: You can also use the % helper button to select %user variables.

The following table lists the read-only attributes that are available in procedures
and triggers.

Table 54. Implicit user variables

Variable attribute Data type Description

%user.user_id INTEGER User identifier of the connected user.

%user.user_name STRING Name of the connected user.

%user.app_name STRING Name of the connected application
(such as nco_sql).

%user.host_name STRING Name of the connected host.

%user.connection_id UNSIGNED Connection identifier.

See “Example: Usage of
%user.counterpart_id and
%user.connection_id” on page 228.

%user.counterpart_id UNSIGNED Counterpart connection identifier.

See “Example: Usage of
%user.counterpart_id and
%user.connection_id” on page 228.

%user.is_auto BOOLEAN If TRUE, the current action was caused
by the execution of an automation
(such as a temporal trigger).

%user.is_gateway BOOLEAN If TRUE, the current action was caused
by a gateway client.

%user.is_eventlist BOOLEAN If TRUE, the current action was caused
by an event list client.

%user.description STRING Descriptive name of the application.
Only applicable for ObjectServer
gateways or probes.

Chapter 5. ObjectServer SQL 227

Example: Usage of %user.user_name

To reference the name of the current user in the body of a procedure or trigger, use
the syntax:

%user.user_name

Example: Usage of %user.counterpart_id and %user.connection_id

For gateways, if %user.connection_id refers to a gateway writer component,
%user.counterpart_id is the skip ID of the gateway reader component. This
example shows how these variables can be used in automated failover and
failback, to disconnect all of the clients (except the gateway) from a backup
ObjectServer when the primary ObjectServer comes up. The following code can be
added in the backup_counterpart_up trigger:
For each row connected in catalog.connections where
(connected.ConnectionID <> %user.connection_id and
connected.ConnectionID <> %user.counterpart_id and
connected.AppName == ’GATEWAY’) or
connected.AppName <> ’GATEWAY’
begin
alter system drop connection connected.ConnectionID;
end;

Related reference:
Appendix B, “SQL commands, variable expressions, and helper buttons in tools,
automations, and transient event lists,” on page 399
You can use a number of SQL commands, variable expressions, and helper buttons
to retrieve information from a running event list, the current event, or the
operating system environment. You can use these expressions when creating a tool,
trigger, or SQL procedure, or in parameters passed to a transient event list.

External procedures
You can create external procedures to run an executable program on a local or
remote system.

Creating external procedures (CREATE PROCEDURE command)
Use the CREATE PROCEDURE command to create external procedures.

Syntax
CREATE [OR REPLACE] PROCEDURE procedure_name
([parameter_name
{ parameter_type | ARRAY OF parameter_type

| ROW OF database_name.table_name },...])
EXECUTABLE ’executable_name’
HOST ’host_name’
USER user_id
GROUP group_id
[ARGUMENTS expression,...] [;]

If there is a possibility that a procedure already exists with the same name as the
one you want to create, use the optional OR REPLACE keywords. If the procedure
exists, it is replaced by the one you are creating. If the procedure does not exist, a
new one is created.

228 IBM Tivoli Netcool/OMNIbus: Administration Guide

The procedure_name must be unique within the ObjectServer and comply with the
ObjectServer naming conventions.

After the procedure_name, include the parameter declaration within parentheses (),
to specify the parameters that can be passed into the external procedure. You must
include parentheses after the procedure_name even if the procedure has no
parameters. Each parameter_name must be unique within the procedure and must
comply with the ObjectServer naming conventions.

Tip: External procedure parameters are read-only. They allow you to pass variable
values into an external procedure. You cannot return values from an external
procedure.

The parameter_type defines the type of data that the parameter can pass into the
procedure. The data type can be any valid ObjectServer data type, except
VARCHAR or INCR.

The executable_name is the path to an executable program on a local or remote file
system.

Tip: On Windows, you must escape the backslash character in file paths or the
path will not be interpreted correctly. You can also use the UNIX path separator
when specifying paths on Windows.

The host_name is the name of the host on which to run the executable program for
the procedure.

The user_id is the effective user ID under which to run the executable program.

The group_id is the effective group ID under which to run the executable program.

The arguments are those passed to the executable. Only spaces can be used to
separate arguments. For example: cool tool is interpreted as cool tool, whereas
cool’tool or cool"tool is interpreted as cooltool.

Example

The following external procedure calls a program called nco_mail, which sends
e-mail about unacknowledged critical alerts:
create or replace procedure send_email
(in node character(255), in severity integer, in subject character(255),
in email character(255), in summary character(255), in hostname character(255))
executable ’$NCHOME/omnibus/utils/nco_mail’
host ’localhost’
user 0
group 0
arguments ’\’’ + node + ’\’’, severity, ’\’’ + subject + ’\’’,
’\’’ + email + ’\’’, ’\’’ + summary + ’\’’;

This example also shows how to pass text strings to an executable program. You
must enclose strings in quotation marks, and escape the quotation marks with
backslashes. All quotation marks in this example are single quotation marks.

Note: To run an external procedure, you must have a process control agent
daemon (nco_pad) running on the host where the executable command is stored.

Chapter 5. ObjectServer SQL 229

Related concepts:
“Naming conventions for ObjectServer objects” on page 156
When issuing SQL commands, you must adhere to the naming conventions
defined for ObjectServers.
Chapter 7, “Using process control to manage processes and external procedures,”
on page 275
The Tivoli Netcool/OMNIbus process control system performs two primary tasks.
It manages local and remote processes, and runs external procedures that are
specified in automations.
Related tasks:
“Specifying paths in the SQL interactive interface” on page 156
Some SQL commands require you to enter path names.
Related reference:
“Specifying data types for columns” on page 162
Each column value in the ObjectServer has an associated data type. The data type
determines how the ObjectServer processes the data in the column. For example,
the plus operator (+) adds integer values or concatenates string values, but does
not act on Boolean values.

Running procedures
After you create a procedure, you must run it using the EXECUTE PROCEDURE
command for the actions in the procedure to occur. You can do this using the SQL
interactive interface (nco_sql) or in a trigger or procedure.

Syntax
{ EXECUTE | CALL } [PROCEDURE] procedure_name
[(expression,...) | ([expression, expression,...] ,...)];

Use procedure_name to specify the procedure to run.

Each of the expressions passed as actual parameters must resolve to an assignable
value that matches the type of the parameter specified when the procedure was
created.

Note: If you are passing an array parameter, the square brackets around the
expression list, shown in bold type in the preceding syntax description, are not
optional.

Example

To run the procedure described in “Creating external procedures (CREATE
PROCEDURE command)” on page 228, use the following call in a trigger:
execute send_email(critical.Node, critical.Severity, ’Netcool E-mail’,
’root@localhost’, critical.Summary, ’localhost’);

Related concepts:
“Components of an SQL procedure” on page 219
SQL procedures have the following major components: parameters, local variable
declarations, and procedure body.
Related reference:
“Creating external procedures (CREATE PROCEDURE command)” on page 228
Use the CREATE PROCEDURE command to create external procedures.

230 IBM Tivoli Netcool/OMNIbus: Administration Guide

Dropping procedures
Use the DROP PROCEDURE command to drop an existing procedure.

You cannot drop a procedure if it is referenced by other objects, such as triggers.

Syntax
DROP PROCEDURE procedure_name;

Example
drop procedure testproc;

Configuring automation using triggers
You can use automation to detect changes in the ObjectServer and run automated
responses to these changes. This enables the ObjectServer to process alerts without
requiring an operator to take action. You can also use automation to manage
deduplication, which reduces the quantity of data held in the ObjectServer by
eliminating duplicate events.

A set of standard automations is included with Tivoli Netcool/OMNIbus. These
automations are created during database initialization.

Creating, modifying, and deleting trigger groups
Every trigger belongs to a trigger group, which is a collection of related triggers.

Creating a trigger group (CREATE TRIGGER GROUP command)
Use the CREATE TRIGGER GROUP command to create a new trigger group.
When you create a trigger, you must assign it to a trigger group.

Syntax
CREATE TRIGGER GROUP trigger_group_name;

The trigger_group_name must be unique within the ObjectServer and comply with
the ObjectServer naming conventions.

Example
create trigger group update_database_triggers;

Related concepts:
“Naming conventions for ObjectServer objects” on page 156
When issuing SQL commands, you must adhere to the naming conventions
defined for ObjectServers.

Modifying a trigger group (ALTER TRIGGER GROUP command)
Use the ALTER TRIGGER GROUP command to enable or disable an existing
trigger group.

Syntax
ALTER TRIGGER GROUP trigger_group_name | expression
SET ENABLED { TRUE | FALSE };

A trigger group is enabled by default.

You can specify a trigger group name or an expression with this command. If it is
an expression, the name is not evaluated until run time.

Chapter 5. ObjectServer SQL 231

Examples

This example disables the update_database_triggers trigger group.
alter trigger group update_database_triggers set enabled false;

This example disables all triggers except gateway triggers (belonging to the
gateway_triggers trigger group) by individually listing the names of all the other
trigger groups to be disabled.
Create trigger disable_triggers
Group gateway_triggers
Priority 1
on signal gw_counterpart_up
begin
alter trigger group trigger_group_name_1 set enabled false;
...
alter trigger group trigger_group_name_n set enabled false;
end;

This example uses an expression to disable all triggers except gateway triggers that
belong to the gateway_triggers trigger group. At run time, the FOR EACH ROW
loop is used to perform the actions in the expression, on each row in the
catalog.triggers table.
Create trigger disable_triggers
Group gateway_triggers
Priority 1
on signal gw_counterpart_up
begin
for each row tg in catalog.triggers where
tg.GroupName <> ’gateway_triggers’
begin
alter trigger group tg.GroupName set enabled false;
end;
end;

Deleting a trigger group (DROP TRIGGER GROUP command)
Use the DROP TRIGGER GROUP command to drop an existing trigger group.

Syntax
DROP TRIGGER GROUP trigger_group_name;

You cannot drop a trigger group if it contains any triggers.

Example
drop trigger group update_database_triggers;

Creating, modifying, and dropping triggers
You can use database triggers, temporal triggers, and signal triggers in
automations.

Database triggers fire if any of the following database changes occur:
v An attempt is made to insert a row into a table.
v An attempt is made to update a row in a table.
v An attempt is made to delete a row from a table.
v An attempt is made to insert a row into a table, but a row with the same value

for the Identifier primary key already exists. You can use a reinsert trigger to
deduplicate rows in the ObjectServer.

232 IBM Tivoli Netcool/OMNIbus: Administration Guide

Note: You can create your own deduplication trigger to cause a different action
to occur.

Temporal triggers fire repeatedly based on a specified frequency.

For example, you can use a temporal trigger to delete all clear rows (Severity = 0)
from the alerts.status table that have not been modified within a certain period of
time.

Signal triggers fire when a predefined system signal is raised or when a
user-defined signal is raised using the RAISE SIGNAL command.

For example, you can send an e-mail to an operator when the ObjectServer starts
or stops because system signals are generated.

You do not have to do anything to create or configure system signals. You must
explicitly create, raise, and drop user-defined signals.

Creating database triggers (CREATE TRIGGER command)
Use the CREATE TRIGGER command to create database triggers that fire when a
modification or attempted modification to an ObjectServer table occurs (or when a
modification or attempted modification to a view affects a base table).

Syntax
CREATE [OR REPLACE] TRIGGER trigger_name
GROUP group_name
[DEBUG { TRUE | FALSE }]
[ENABLED { TRUE | FALSE }]
PRIORITY integer
[COMMENT ’comment_string’]
{ BEFORE | AFTER } { INSERT | UPDATE | DELETE | REINSERT }
ON database_name.table_name
FOR EACH { ROW | STATEMENT }
[WHEN condition]
[DECLARE variable_declaration]
BEGIN

trigger_action
END;

If there is a possibility that a trigger already exists with the same name as the one
that you want to create, use the optional OR REPLACE keywords. If the trigger
exists, it is replaced by the one that you are creating. If the trigger does not exist, a
new one is created.

The trigger_name value must be unique within the ObjectServer and comply with
the ObjectServer naming conventions.

The group_name value can be any trigger group already created by using the
CREATE TRIGGER GROUP command.

If DEBUG is set to TRUE, debugging information is sent to the ObjectServer
message log, if the message level is set to debug.

If ENABLED is set to TRUE, the trigger fires when the associated incident occurs.
Otherwise, the trigger does not fire when the incident occurs.

The PRIORITY of a trigger determines the order in which the ObjectServer fires
triggers when more than one trigger is associated with the same incident. The

Chapter 5. ObjectServer SQL 233

priority can be in the range of 1 to 20. The lower the number, the higher the
priority, so a trigger with a priority of 2 is fired before a trigger with a priority of
3. If more than one trigger of the same priority is fired because of the same
incident, the order in which these triggers fire is undetermined.

Use the optional COMMENT keyword to add a comment (comment_string) for the
trigger.

The BEFORE or AFTER timing keyword specifies whether the trigger runs before
or after the database modification that caused the trigger to fire occurs. For
example, you can create a BEFORE trigger that evaluates the name of the user
before a row in the alerts.status table is deleted. In the trigger, you can detect
whether the user is allowed to delete from the alerts.status table, and if not,
prevent the database modification from taking place. With an AFTER trigger, the
database modification always takes place.

The database_name.table_name is the name of the database and table affected by the
trigger action.

A database trigger fires at one of the following levels:
v FOR EACH ROW (known as a row-level trigger): Row-level triggers fire once for

each row returned as a result of the database modification.
v FOR EACH STATEMENT (known as a statement-level trigger): Statement-level

triggers fire once for each database modification.

Note: Only row-level triggers can be defined to fire on inserts and reinserts.

Note: BEFORE statement-level triggers always fire before BEFORE row-level
triggers, and AFTER statement-level triggers always fire after AFTER row-level
triggers, regardless of trigger priority.

Use the optional WHEN clause to test for a particular condition before the trigger
action runs. If the condition is not met, the trigger action does not run.

You can optionally declare local trigger variables for use in the body of the trigger.
These variables are declared and used in the same way as procedure variables.
However, trigger variables are static, so they maintain their value between the
times when the trigger runs.

Example

A database signal is raised as a result of the following SQL statement:
DELETE FROM alerts.status WHERE Severity = 5;

When this statement runs, the ObjectServer deletes all the rows in the alerts.status
table with a severity of 5. If there are 20 rows in the table with this severity and
the level is set to FOR EACH ROW, 20 rows are deleted and the trigger is raised
20 times. If the level is set to FOR EACH STATEMENT, the trigger is raised once.

234 IBM Tivoli Netcool/OMNIbus: Administration Guide

Related concepts:
“Naming conventions for ObjectServer objects” on page 156
When issuing SQL commands, you must adhere to the naming conventions
defined for ObjectServers.
“Conditions” on page 192
A condition is a combination of expressions and operators that evaluate to TRUE
or FALSE.
Related reference:
“Running commands in trigger actions” on page 241
The trigger_action contains a set of commands that manipulates data in the
ObjectServer.
“Best practices for creating triggers” on page 351
When you create or modify triggers, ensure that the triggers are as efficient as
possible, and have the shortest possible execution time.

NEW and OLD implicit variables in row-level triggers:

In addition to the local variables declared in the trigger, row-level triggers have
access to implicit variables whose values are automatically set by the system.

The OLD variable refers to the value of a column before the incident occurs; the NEW
variable refers to a column affected by the incident, after it has occurred. You can
use expressions to read from and assign values to row variables.

Certain operations on the NEW or OLD row variables may not be accessible or
modifiable depending on the type of modification. For example, if the ObjectServer
deletes a row, there is no NEW row to read or modify.

The following table shows when the NEW and OLD variables are available depending
on the database operation.

Table 55. Availability of special row variables

Operation Timing mode

Is the NEW
variable
available?

Is the NEW
variable
modifiable?

Is the OLD
variable
available?

Is the OLD
variable
modifiable?

INSERT BEFORE Y Y N N

INSERT AFTER Y N N N

UPDATE BEFORE Y Y Y N

UPDATE AFTER Y N N N

DELETE BEFORE N N Y N

DELETE AFTER N N Y N

REINSERT BEFORE Y N Y Y

REINSERT AFTER Y N N N

Note: In a post-reinsert trigger, only the NEW variable is available, and this
represents the data from the INSERT statement. For example, if Tally is not
specified in the INSERT statement, new.Tally will have a default value of 0 (zero).

Chapter 5. ObjectServer SQL 235

Example

The following database trigger uses the NEW variable to update the StateChange
column when a row in the alerts.status table is modified to time stamp the change.
create trigger SetStateChange
group default_triggers
priority 1
before update on alerts.status
for each row
begin

set new.StateChange = getdate;
end;

Creating temporal triggers (CREATE TRIGGER command)
Use the CREATE TRIGGER command to create temporal triggers that fire at a
specified frequency.

Syntax
CREATE [OR REPLACE] TRIGGER trigger_name
GROUP group_name
[DEBUG { TRUE | FALSE }]
[ENABLED { TRUE | FALSE }]
PRIORITY integer
[COMMENT ’comment_string’
EVERY integer { HOURS | MINUTES | SECONDS }
[EVALUATE SELECT_cmd BIND AS variable_name]
[WHEN condition]
[DECLARE variable_declaration]

BEGIN
trigger_action

END;

If there is a possibility that a trigger already exists with the same name as the one
that you want to create, use the optional OR REPLACE keywords. If the trigger
exists, it is replaced by the one that you are creating. If the trigger does not exist, a
new one is created.

The trigger_name value must be unique within the ObjectServer and comply with
the ObjectServer naming conventions.

The group_name value can be any trigger group already created by using the
CREATE TRIGGER GROUP command.

If DEBUG is set to TRUE, debugging information is sent to the ObjectServer
message log, if the message level is set to debug.

If ENABLED is set to TRUE, the trigger fires when the associated incident occurs.
Otherwise, the trigger does not fire when the incident occurs.

The PRIORITY of a trigger determines the order in which the ObjectServer fires
triggers when more than one trigger is associated with the same incident. The
priority can be in the range of 1 to 20. The lower the number, the higher the
priority, so a trigger with a priority of 2 is fired before a trigger with a priority of
3. If more than one trigger of the same priority is fired because of the same
incident, the order in which these triggers fire is undetermined.

Use the optional COMMENT keyword to add a comment (comment_string) for the
trigger.

236 IBM Tivoli Netcool/OMNIbus: Administration Guide

Within a temporal trigger, you must specify how often the trigger will fire. Specify
an integer value in seconds (the default unit of time), minutes, or hours.

Use the optional EVALUATE clause to build a temporary result set from a single
SELECT statement to be processed in the trigger_action. The SELECT statement
cannot contain an ORDER BY clause.

Note: The EVALUATE clause must fully qualify any tables, which are included in
the SELECT statement, with a database name. For example, the following syntax is
deemed invalid: evaluate select Node from status... The correct syntax is:
evaluate select Node from alerts.status...

An EVALUATE clause can mostly be replaced with a FOR EACH ROW clause. Use
an EVALUATE clause only when a GROUP BY clause is required.

Use the optional WHEN clause to test for a particular condition before the trigger
action runs. If the condition is not met, the trigger action does not run.

You can optionally declare local trigger variables for use in the body of the trigger.
These variables are declared and used in the same way as procedure variables.
However, trigger variables are static, so they maintain their value between the
times when the trigger runs.

Example

The following temporal trigger deletes all clear rows (Severity = 0) from the
alerts.status table that have not been modified in the last two minutes.
create trigger DeleteClears
group my_triggers
priority 1
every 60 seconds
begin

delete from alerts.status where Severity = 0
and StateChange < (getdate - 120);

end;

Related concepts:
“Naming conventions for ObjectServer objects” on page 156
When issuing SQL commands, you must adhere to the naming conventions
defined for ObjectServers.
“Conditions” on page 192
A condition is a combination of expressions and operators that evaluate to TRUE
or FALSE.
Related reference:
“Running commands in trigger actions” on page 241
The trigger_action contains a set of commands that manipulates data in the
ObjectServer.
“Best practices for creating triggers” on page 351
When you create or modify triggers, ensure that the triggers are as efficient as
possible, and have the shortest possible execution time.

Chapter 5. ObjectServer SQL 237

Creating signal triggers (CREATE TRIGGER command)
Use the CREATE TRIGGER command to create a signal trigger that fires in
response to incidents in the ObjectServer, or that fires in response to a user-defined
signal.

Syntax
CREATE [OR REPLACE] TRIGGER trigger_name
GROUP group_name
[DEBUG { TRUE | FALSE }]
[ENABLED { TRUE | FALSE }]
PRIORITY integer
[COMMENT ’comment_string’]
ON SIGNAL { system_signal_name | user_signal_name }
[EVALUATE SELECT_cmd BIND AS variable_name]
[WHEN condition]
[DECLARE variable_declaration]
BEGIN
trigger_action

END;

If there is a possibility that a trigger already exists with the same name as the one
that you want to create, use the optional OR REPLACE keywords. If the trigger
exists, it is replaced by the one that you are creating. If the trigger does not exist, a
new one is created.

The trigger_name value must be unique within the ObjectServer and comply with
the ObjectServer naming conventions.

The group_name value can be any trigger group already created by using the
CREATE TRIGGER GROUP command.

If DEBUG is set to TRUE, debugging information is sent to the ObjectServer
message log, if the message level is set to debug.

If ENABLED is set to TRUE, the trigger fires when the associated incident occurs.
Otherwise, the trigger does not fire when the incident occurs.

The PRIORITY of a trigger determines the order in which the ObjectServer fires
triggers when more than one trigger is associated with the same incident. The
priority can be in the range of 1 to 20. The lower the number, the higher the
priority, so a trigger with a priority of 2 is fired before a trigger with a priority of
3. If more than one trigger of the same priority is fired because of the same
incident, the order in which these triggers fire is undetermined.

Use the optional COMMENT keyword to add a comment (comment_string) for the
trigger.

The ON SIGNAL name can be the name of a system or user-defined signal that
fires the trigger.

The optional EVALUATE clause enables you to build a temporary result set from a
single SELECT statement to be processed in the trigger_action. The SELECT
statement cannot contain an ORDER BY clause.

Note: The EVALUATE clause must fully qualify any tables, which are included in
the SELECT statement, with a database name. For example, the following syntax is
deemed invalid: evaluate select Node from status... The correct syntax is:
evaluate select Node from alerts.status...

238 IBM Tivoli Netcool/OMNIbus: Administration Guide

When a system or user-defined signal is raised, attributes that identify the cause of
the signal are attached to the signal. These attributes are passed as implicit
variables into the associated signal trigger.

Use the optional WHEN clause to test for a particular condition before the trigger
action runs. If the condition is not met, the trigger action does not run.

You can optionally declare local trigger variables for use in the body of the trigger.
These variables are declared and used in the same way as procedure variables.
However, trigger variables are static, so they maintain their value between the
times when the trigger runs.
Related concepts:
“Naming conventions for ObjectServer objects” on page 156
When issuing SQL commands, you must adhere to the naming conventions
defined for ObjectServers.
“Conditions” on page 192
A condition is a combination of expressions and operators that evaluate to TRUE
or FALSE.
Related reference:
“System signals and their attributes” on page 243
When a system signal is raised, attributes that identify the cause of the signal are
set. These attributes are passed as implicit variables into the associated signal
trigger.
“Best practices for creating triggers” on page 351
When you create or modify triggers, ensure that the triggers are as efficient as
possible, and have the shortest possible execution time.

Creating a user-defined signal:

Use the CREATE SIGNAL command to create a user-defined signal. When you
create a signal, you define a list of data-typed attributes.

Syntax
CREATE [OR REPLACE] SIGNAL signal_name
[(signal_attribute_name data_type,...)]
[COMMENT ’comment_string’]

The signal name must be unique within the ObjectServer and comply with the
ObjectServer naming conventions. You cannot create a user-defined signal with the
same name as a system signal.

When you define attributes, specify the attribute name and any valid ObjectServer
data type except VARCHAR or INCR.

You can add a comment following the optional COMMENT keyword.

Example

To create a signal called illegal_delete with two character string attributes,
user_name and row_summary, use the command:
CREATE SIGNAL illegal_delete(user_name char(40), row_summary char(255));

You could then create a trigger, such as the following pre-insert database trigger, to
trap deletes that occur outside of standard office hours and raise this signal.

Chapter 5. ObjectServer SQL 239

create trigger DETECT_AN_ILLEGAL_DELETE
group default_triggers
priority 1
before delete on alerts.status
for each row
begin
if(((hourofday() > 17) and (minuteofhour() > 30)) or (hourofday() < 9)) then

raise signal ILLEGAL_DELETE %user.user_name, old.Summary;
cancel;

end if;
end;

The following user-defined signal trigger, which is triggered by the preceding
database trigger, runs an external procedure to send mail notification of the
attempted delete operation.
create trigger AFTER_HOURS_DELETE_WARNING

group default_triggers
priority 1
on signal ILLEGAL_DELETE
begin
execute MAIL_THE_BOSS(’User ’ + ’%signal.user_name ’ +

’attempted to remove the row ’ + %signal.row_summary + ’ at ’ +to_char(getdate))
end;

Related concepts:
“Naming conventions for ObjectServer objects” on page 156
When issuing SQL commands, you must adhere to the naming conventions
defined for ObjectServers.
Related reference:
“Specifying data types for columns” on page 162
Each column value in the ObjectServer has an associated data type. The data type
determines how the ObjectServer processes the data in the column. For example,
the plus operator (+) adds integer values or concatenates string values, but does
not act on Boolean values.

Raising a user-defined signal:

Use the RAISE SIGNAL command to raise a user-defined signal.

Syntax
RAISE SIGNAL signal_name expression,...;

The expressions must resolve to a value compatible with the data type of the
associated attribute as defined using the CREATE SIGNAL command.

Example
RAISE SIGNAL illegal_delete %user.user_name, old.Summary;

240 IBM Tivoli Netcool/OMNIbus: Administration Guide

Dropping a user-defined signal:

Use the DROP SIGNAL command to drop a user-defined signal.

You cannot drop a signal if a trigger references it.

Syntax
DROP SIGNAL signal_name;

Running commands in trigger actions
The trigger_action contains a set of commands that manipulates data in the
ObjectServer.

You can run the following SQL commands in a trigger:
ALTER FILE
ALTER SYSTEM BACKUP
ALTER SYSTEM DROP CONNECTION
ALTER SYSTEM SET
ALTER TRIGGER
ALTER TRIGGER GROUP
ALTER USER
UPDATE
INSERT
DELETE
WRITE INTO
RAISE SIGNAL
{ EXECUTE | CALL } PROCEDURE

The user creating the trigger must have appropriate permissions to run the
commands in the trigger body.

Attention: You cannot have circular dependencies in triggers or procedures; for
example, you must not create a trigger that calls a procedure which then causes
the original trigger to fire.

You can use the following additional programming constructs in a trigger:
v The SET assignment statement
v The IF THEN ELSE statement
v The CASE WHEN statement
v The FOR EACH ROW loop
v The FOR loop

Chapter 5. ObjectServer SQL 241

Related reference:
“Creating database triggers (CREATE TRIGGER command)” on page 233
Use the CREATE TRIGGER command to create database triggers that fire when a
modification or attempted modification to an ObjectServer table occurs (or when a
modification or attempted modification to a view affects a base table).
“SET statement” on page 224
When constructing the body of an SQL procedure, you can use a SET assignment
statement to write the value of an expression to a variable or parameter.
“IF THEN ELSE statement” on page 224
When constructing the body of an SQL procedure, you can use the IF THEN ELSE
statement to perform one or more actions based on the specified conditions.
“CASE WHEN statement” on page 225
When constructing the body of an SQL procedure, you can use the CASE WHEN
statement to perform one or more actions based on a condition. If the condition is
not met, you can optionally perform a different action.
“FOR EACH ROW loop” on page 225
When constructing the body of an SQL procedure, you can use the FOR EACH
ROW loop to perform actions on a set of rows that match a certain condition.
“FOR loop” on page 226
When constructing the body of an SQL procedure, you can use the FOR loop to
perform actions a set number of times, based on a counter variable.

Using trigger variables in trigger conditions and actions
You can use trigger variables to access information about the current and previous
executions of the trigger. Use the %trigger notation to specify trigger variables.
The % symbol indicates that you are referencing an implicit variable. The trigger
keyword references the current trigger.

For example, to reference the previous trigger row count, use the syntax:
%trigger.previous_rowcount

Tip: You can also use the % helper button to select %trigger variables.

The following table lists the read-only attributes available in the WHEN clause and
action section of a trigger.

Table 56. Implicit trigger variables

Trigger attribute Data type Description

%trigger.previous_condition BOOLEAN Value of the condition on last
execution.

%trigger.previous_rowcount UNSIGNED Number of rows returned by the
EVALUATE clause the last time
the trigger was raised.

%trigger.num_positive_rowcount UNSIGNED Number of consecutive fires
with one or more matches in
EVALUATE clause.

%trigger.num_zero_rowcount UNSIGNED Number of consecutive fires
with zero matches in
EVALUATE clause.

242 IBM Tivoli Netcool/OMNIbus: Administration Guide

Table 56. Implicit trigger variables (continued)

Trigger attribute Data type Description

%rowcount UNSIGNED Number of rows that matched
the EVALUATE clause when a
temporal trigger fires.
Note: This variable does not
require the trigger keyword
prefix. The variable value only
holds true if it is checked as the
first action in the trigger body.
After this, the value is
indeterminate.

Note: In a database trigger, the only valid trigger variable is
%trigger.previous_condition. All other trigger variables provide the result for an
EVALUATE clause, which is not supported for database triggers.

Example

This system signal trigger logs the name of each user who connects to the
ObjectServer to a file.
CREATE TRIGGER LogConnections
GROUP default_triggers
PRIORITY 1
ON SIGNAL connect
BEGIN
WRITE INTO file1 VALUES (’User’, %user.user_name, ’has logged on.’);
END;

Related reference:
Appendix B, “SQL commands, variable expressions, and helper buttons in tools,
automations, and transient event lists,” on page 399
You can use a number of SQL commands, variable expressions, and helper buttons
to retrieve information from a running event list, the current event, or the
operating system environment. You can use these expressions when creating a tool,
trigger, or SQL procedure, or in parameters passed to a transient event list.
“Implicit user variables in procedures and triggers” on page 227
You can use user variables to access information about connected users within an
SQL expression in the body of a trigger or procedure.

System signals and their attributes
When a system signal is raised, attributes that identify the cause of the signal are
set. These attributes are passed as implicit variables into the associated signal
trigger.

You can refer to system signal variables by using the %signal notation in the action
section of a signal trigger. The % symbol indicates that you are referencing an
implicit variable. The signal keyword references the signal currently passed to the
trigger. For example, to reference the time at which a system signal was raised in a
signal trigger, use the following syntax:
%signal.at

Tip: You can also use the % helper button to select %signal variables.

The system signals that can be raised by the ObjectServer or the gateway are as
follows:

Chapter 5. ObjectServer SQL 243

v “startup signal”
v “shutdown signal”
v “connect signal” on page 245
v “disconnect signal” on page 245
v “backup_failed signal” on page 246
v “backup_succeeded signal” on page 246
v “login_failed signal” on page 246
v “security_timeout signal” on page 247
v “create_object signal” on page 247
v “alter_object signal” on page 248
v “drop_object signal” on page 249
v “permission_denied signal” on page 249
v “gw_counterpart_down signal” on page 250
v “gw_counterpart_up signal” on page 250
v “iduc_missed signal” on page 251
v “iduc_connect signal” on page 251
v “iduc_disconnect signal” on page 251
v “iduc_data_fetch signal” on page 252
v “resync_lock signal” on page 252
v “resync_unlock signal” on page 253
v “gw_resync_start signal” on page 253
v “gw_resync_finish signal” on page 253

Tip: You can query the catalog.primitive_signals table and the
catalog.primitive_signal_parameters table to view information about system
signals. For example, to view the attributes of each system signal, use the
following SQL command:
SELECT * FROM catalog.primitive_signal_parameters ORDER BY SignalName,
OrdinalPosition;

startup signal

The startup signal is raised when the ObjectServer starts. The following table
describes the attributes of this signal.

Table 57. startup signal attributes

Attributes Data type Description

server string Indicates the name of the ObjectServer that started.

node string Indicates the computer on which the ObjectServer
started.

at UTC Indicates the time at which the ObjectServer started.

shutdown signal

The shutdown signal is raised when the ObjectServer shuts down. The following
table describes the attributes of this signal.

244 IBM Tivoli Netcool/OMNIbus: Administration Guide

Table 58. shutdown signal attributes

Attributes Data type Description

server string Indicates the name of the ObjectServer that shut
down.

node string Indicates the computer on which the ObjectServer
shut down.

at UTC Indicates the time at which the ObjectServer shut
down.

connect signal

The connect signal is raised when a client connects to the ObjectServer. The
following table describes the attributes of this signal.

Table 59. connect signal attributes

Attributes Data type Description

process string Indicates the type of client process that connected to
the ObjectServer.

description string Contains additional information about the client that
connected, where available. For example, if the client
is a probe, the description contains the probe name.

username string Indicates the name of the user that connected to the
ObjectServer.

node string Indicates the name of the client computer that
connected to the ObjectServer.

connectionid int Uniquely identifies the connection.

at UTC Indicates the time at which the client connected.

disconnect signal

The disconnect signal is raised when a client disconnects from the ObjectServer.
The following table describes the attributes of this signal.

Table 60. disconnect signal attributes

Attributes Data type Description

process string Indicates the type of process that disconnected from
the ObjectServer.

description string Contains additional information about the client that
disconnected, where available. For example, if the
client is a probe, the description contains the probe
name.

username string Indicates the name of the user that disconnected
from the ObjectServer.

node string Indicates the name of the client computer that
disconnected from the ObjectServer.

connectionid int Uniquely identifies the connection.

at UTC Indicates the time at which the client disconnected.

Chapter 5. ObjectServer SQL 245

backup_failed signal

The backup_failed signal is raised when an attempt to back up the ObjectServer
fails. The following table describes the attributes of this signal.

Table 61. backup_failed signal attributes

Attributes Data type Description

error string Indicates a reason why the backup attempt failed.

at UTC Indicates the time at which the backup attempt
occurred.

path_prefix string Indicates the directory to which the backup
attempted to write.

elapsed_time real Indicates the amount of time the backup was
running before it failed.

node string Indicates the name of the computer from which the
backup was run.

backup_succeeded signal

The backup_succeeded signal is raised when the ObjectServer is successfully
backed up. The following table describes the attributes of this signal.

Table 62. backup_succeeded signal attributes

Attributes Data type Description

at UTC Indicates the time at which the backup occurred.

path_prefix string Indicates the directory to which the backup was
written.

elapsed_time real Indicates the amount of time that the backup took to
complete.

node string Indicates the name of the computer from which the
backup was run.

login_failed signal

The login_failed signal is raised when a client fails to log in to the ObjectServer.
The following table describes the attributes of this signal.

Table 63. login_failed signal attributes

Attributes Data type Description

process string Indicates the name of the process that could not
connect because the login was denied.

username string Indicates the name of the user that failed to connect
because login was denied.

node string Indicates the name of the client computer that could
not connect because the login was denied.

at UTC Indicates the time at which the client failed to
connect because the login was denied.

246 IBM Tivoli Netcool/OMNIbus: Administration Guide

security_timeout signal

The security_timeout signal is raised when a login attempt to the ObjectServer
times out. The following table describes the attributes of this signal.

Table 64. security_timeout signal attributes

Attributes Data type Description

process string Indicates the name of the process that failed to
connect because login credentials could not be
validated.

username string Indicates the name of the user that failed to connect
because login credentials could not be validated.

node string Indicates the name of the client computer that failed
to connect because login credentials could not be
validated.

at UTC Indicates the time at which the client failed to
connect because login credentials could not be
validated.

create_object signal

The create_object signal is raised when an object is created in the ObjectServer. The
following table describes the attributes of this signal.

Table 65. create_object signal attributes

Attributes Data type Description

objecttype string Indicates the object type, which is one of the
following types:

v CREATE DATABASE

v CREATE TABLE

v CREATE INDEX

v CREATE TRIGGER GROUP

v CREATE TRIGGER

v CREATE PROCEDURE

v CREATE RESTRICTION FILTER

v CREATE USER SIGNAL

v CREATE FILE

v CREATE USER

v CREATE GROUP

v CREATE ROLE

parentname string Indicates the name of the parent object. For triggers,
this is the trigger group name. For tables, this is the
database name. Other objects do not have a parent
object.

name string Indicates the name of the object. For example, the
value for the alerts.status table is status.

username string Indicates the name of the user that ran the
command.

server string Indicates the name of the ObjectServer to which the
object was added.

Chapter 5. ObjectServer SQL 247

Table 65. create_object signal attributes (continued)

Attributes Data type Description

node string Indicates the name of the computer running the
ObjectServer to which the object was added.

hostname string Indicates the name of the client computer from
which the request to add the object was made.

at UTC Indicates the time at which the object was added.

alter_object signal

The alter_object signal is raised when an object in the ObjectServer is altered. The
following table describes the attributes of this signal.

Table 66. alter_object signal attributes

Attributes Data type Description

objecttype string Indicates the object type, which is one of the
following types:

v ALTER TABLE

v ALTER TRIGGER GROUP

v ALTER TRIGGER

v ALTER PROCEDURE

v ALTER RESTRICTION FILTER

v ALTER USER SIGNAL

v ALTER FILE

v ALTER USER

v ALTER GROUP

v ALTER ROLE

Note: The ALTER PROCEDURE, ALTER
RESTRICTION FILTER, and ALTER USER SIGNAL
permissions are required if a CREATE OR REPLACE
command is run against an object of one of these
types and the object already exists. You must have
the appropriate ALTER permission even though
there is no ALTER command for these objects.

parentname string Indicates the name of the parent object. For triggers,
this is the trigger group name. For tables, this is the
database name. Other objects do not have a parent
object.

name string Indicates the name of the object. For example, the
value for the alerts.status table is status.

username string Indicates the name of the user that ran the
command.

server string Indicates the name of the ObjectServer in which the
object was altered.

node string Indicates the name of the computer running the
ObjectServer in which the object was altered.

hostname string Indicates the name of the client computer from
which the request to alter the object was made.

at UTC Indicates the time at which the object was altered.

248 IBM Tivoli Netcool/OMNIbus: Administration Guide

drop_object signal

The drop_object signal is raised when an object in the ObjectServer is dropped. The
following table describes the attributes of this signal.

Table 67. drop_object signal attributes

Attributes Data type Description

objecttype string Indicates the object type, which is one of the
following types:

v DROP DATABASE

v DROP TABLE

v DROP INDEX

v DROP TRIGGER GROUP

v DROP TRIGGER

v DROP PROCEDURE

v DROP RESTRICTION FILTER

v DROP USER SIGNAL

v DROP FILE

v DROP USER

v DROP GROUP

v DROP ROLE

parentname string Indicates the name of the parent object. For triggers,
this is the trigger group name. For tables, this is the
database name. Other objects do not have a parent
object.

name string Indicates the name of the object. For example, the
value for the alerts.status table is status.

username string Indicates the name of the user that ran the
command.

server string Indicates the name of the ObjectServer from which
the object was dropped.

node string Indicates the name of the computer running the
ObjectServer from which the object was dropped.

hostname string Indicates the name of the client computer from
which the request to drop the object was made.

at UTC Indicates the time at which the object was dropped.

permission_denied signal

The permission_denied signal is raised when permission to perform an operation
is denied. The following table describes the attributes of this signal.

Table 68. permission_denied signal attributes

Attributes Data type Description

username string Indicates the name of the user that made the request
that caused the permission denied error.

server string Indicates the name of the ObjectServer that
generated the permission denied error.

Chapter 5. ObjectServer SQL 249

Table 68. permission_denied signal attributes (continued)

Attributes Data type Description

node string Indicates the name of the computer running the
ObjectServer that generated the permission denied
error.

hostname string Indicates the name of the client computer from
which the request that caused the permission denied
error was made.

at UTC Indicates the time at which the permission denied
error occurred.

sql_cmd string Indicates the SQL command that caused the
permission denied error.

gw_counterpart_down signal

The gateway raises a gw_counterpart_down signal in the backup ObjectServer
when it detects that the primary ObjectServer is unavailable. The following table
describes the attributes of this signal.

Table 69. gw_counterpart_down signal attributes

Attributes Data type Description

server string Indicates the name of the counterpart ObjectServer
that failed, in a failover/failback pair.

node string Indicates the name of the computer from which the
counterpart ObjectServer was run.

at UTC Indicates the time at which the counterpart
ObjectServer failed.

gateway_name string Indicates the name of the gateway between the
primary and backup ObjectServers.

gw_counterpart_up signal

The gateway raises a gw_counterpart_up signal in the backup ObjectServer when it
detects that the primary ObjectServer is available again. The following table
describes the attributes of this signal.

Table 70. gw_counterpart_up signal attributes

Attributes Data type Description

server string Indicates the name of the counterpart ObjectServer
that is available again, in a failover/failback pair.

node string Indicates the name of the computer from which the
counterpart ObjectServer was run.

at UTC Indicates the time at which the counterpart
ObjectServer failed.

gateway_name string Indicates the name of the gateway between the
primary and backup ObjectServers.

250 IBM Tivoli Netcool/OMNIbus: Administration Guide

iduc_missed signal

The iduc_missed signal is raised whenever a desktop or gateway client fails to
respond to an IDUC prompt from the ObjectServer. The following table describes
the attributes of this signal.

Table 71. iduc_missed signal attributes

Attributes Data type Description

process string Indicates the type of client process that failed to
respond to the IDUC prompt from the ObjectServer.

description string Contains additional information about the client,
where available.

username string Indicates the name of the user that is connected to
the ObjectServer.

node string Indicates the name of the client computer that is
connected to the ObjectServer.

connectionid int Uniquely identifies the connection.

at UTC Indicates the time at which the IDUC cycle was
missed.

missed_cycles int Indicates the number of consecutively-missed IDUC
cycles.

iduc_connect signal

The iduc_connect signal is raised when a client establishes an IDUC connection.
The following table describes the attributes of this signal.

Table 72. iduc_connect signal attributes

Attributes Data type Description

process string Indicates the type of client process that connected to
the ObjectServer.

description string Contains additional information about the client that
connected, where available. For example, if the client
is a probe, the description contains the probe name.

username string Indicates the name of the user that connected to the
ObjectServer.

node string Indicates the name of the client computer that
connected to the ObjectServer.

conn_id int Indicates the ID of the connection.

iduc_disconnect signal

The iduc_disconnect signal is raised when a client disconnects an established IDUC
connection. The following table describes the attributes of this signal.

Table 73. iduc_disconnect signal attributes

Attributes Data type Description

process string Indicates the type of client process that disconnected
from the ObjectServer.

Chapter 5. ObjectServer SQL 251

Table 73. iduc_disconnect signal attributes (continued)

Attributes Data type Description

description string Contains additional information about the client that
disconnected, where available. For example, if the
client is a probe, the description contains the probe
name.

username string Indicates the name of the user that disconnected
from the ObjectServer.

node string Indicates the name of the client computer that
disconnected from the ObjectServer.

conn_id int Indicates the ID of the connection.

iduc_data_fetch signal

The iduc_data_fetch signal is raised whenever an IDUC client retrieves its IDUC
changes from the ObjectServer. The following table describes the attributes of this
signal.

Table 74. iduc_data_fetch signal attributes

Attributes Data type Description

process string Indicates the type of client process that requested
pending IDUC changes from the ObjectServer.

description string Contains additional information about the client,
where available. For example, if the client is a probe,
the description contains the probe name.

username string Indicates the name of the user that is connected to
the ObjectServer.

node string Indicates the name of the client computer that is
connected to the ObjectServer.

connectionid int Uniquely identifies the connection.

at UTC Indicates the time at which the client retrieved
changes corresponding to the last IDUC notification.

resync_lock signal

The resync_lock signal is raised by the ObjectServer when the resync lock is
locked. The following table describes the attributes of this signal.

Table 75. resync_lock signal attributes

Attributes Data type Description

process string Indicates the type of client process that locked the
resync lock.

description string Contains additional information about the client that
locked the resync lock, where available. For example,
if the client is a probe, the description contains the
probe name.

username string Indicates the name of the user running the process.

node string Indicates the name of the client computer connected
to the ObjectServer.

at UTC Indicates the time at which the signal occurred

252 IBM Tivoli Netcool/OMNIbus: Administration Guide

resync_unlock signal

The resync_unlock signal is raised by the ObjectServer when the resync lock is
unlocked. The following table describes the attributes of this signal.

Table 76. resync_unlock signal attributes

Attributes Data type Description

process string Indicates the type of client process that unlocked the
resync lock.

description string Contains additional information about the client that
unlocked the resync lock, where available. For
example, if the client is a probe, the description
contains the probe name.

username string Indicates the name of the user running the process.

node string Indicates the name of the client computer connected
to the ObjectServer.

at UTC Indicates the time at which the signal occurred

gw_resync_start signal

The gw_resync_start signal is raised by the gateway to indicate the start of a
resynchronization operation. The following table describes the attributes of this
signal.

Table 77. gw_resync_start signal attributes

Attributes Data type Description

gateway_name string Indicates the name of the gateway that is starting the
resynchronization.

node string Indicates the host name of the computer on which
the gateway is running.

at UTC Indicates the time at which the resynchronization
started.

is_master Boolean Indicates whether the local ObjectServer is the
master or slave of the resynchronization.

gw_resync_finish signal

The gw_resync_finish signal is raised by the gateway to indicate the end of a
resynchronization operation. The following table describes the attributes of this
signal.

Table 78. gw_resync_finish signal attributes

Attributes Data type Description

gateway_name string Indicates the name of the gateway that is finishing
the resynchronization.

node string Indicates the host name of the computer on which
the gateway is running.

at UTC Indicates the time at which the resynchronization
finished.

Chapter 5. ObjectServer SQL 253

Table 78. gw_resync_finish signal attributes (continued)

Attributes Data type Description

is_master Boolean Indicates whether the local ObjectServer is the
master or slave of the resynchronization.

Related reference:
Appendix B, “SQL commands, variable expressions, and helper buttons in tools,
automations, and transient event lists,” on page 399
You can use a number of SQL commands, variable expressions, and helper buttons
to retrieve information from a running event list, the current event, or the
operating system environment. You can use these expressions when creating a tool,
trigger, or SQL procedure, or in parameters passed to a transient event list.

Creating triggers for accelerated event notification
To support accelerated event notification, create post-insert, post-update, or
post-reinsert triggers that are attached to the alerts.status table. In the triggers, set
up conditions to define or identify accelerated events when they are inserted or
updated in the alerts.status table, and to forward such events to the relevant
Accelerated Event Notification clients.

Two SQL commands are available for use with your triggers: an event fast-track
(or accelerated event) command (IDUC EVTFT) and a send message command
(IDUC SNDMSG).

Tip: You might find it useful to group triggers that support accelerated event
notification within their own trigger group.
Related concepts:
Chapter 6, “Configuring accelerated event notification,” on page 265
You can configure Tivoli Netcool/OMNIbus for accelerated event notification of
events that could present a risk to the system. The Accelerated Event Notification
(AEN) system provides a means of accelerating high-priority events to help ensure
that systems can continue to run without interruption.

Activating accelerated event notification (IDUC EVTFT command):

Use the IDUC EVTFT command to activate pop-up notifiers for accelerated events
to be sent to clients, and to enable click-across functionality to the desktop event
list or the Web GUI Active Event List.

Syntax
IDUC EVTFT destination, action_type, row

The variables in this command can take the following values:
v destination = spid | iduc_channel

v spid = integer_expression (The literal client connection ID)
v iduc_channel = string_expression (Channel name)
v action_type = INSERT | UPDATE | DELETE
v row = variable (Variable name reference of a row in the automation)

For example, if you have set up an accelerated event flag within your probe rules
file and added a column for this flag to the alerts.status table, you can add a
condition within a post-insert trigger to examine the value within this column. If
the value is satisfied for accelerated event notification, the event is then forwarded

254 IBM Tivoli Netcool/OMNIbus: Administration Guide

as a pop-up notification to specific Accelerated Event Notification clients. You can
define the condition in the trigger by using the following format:
begin
if (new.accelerated_event_column_name = 1)
then
iduc evtft ’channel_name’ , insert , new ;

end if;
end;

In this syntax, accelerated_event_column_name is the name of the column that holds
accelerated event flag in the alerts.status table, and channel_name is the name of a
channel over which accelerated event data is broadcast. Note that the channel
name is case-sensitive, so ensure that you use the correct case within the syntax.

Example
create or replace trigger evtft_insert
group channel_triggers
priority 1
comment ’Fast track critical events from alerts.status’
after insert on alerts.status
for each row
begin
if (new.FastTrack = 1)
then
iduc evtft ’FastTrack’ , insert , new ;

end if;
end;

Sending messages to AEN clients (IDUC SNDMSG command):

Use the IDUC SNDMSG command to send information messages to an Accelerated
Event Notification client.

Syntax
IDUC SNDMSG destination, string_expression

The variables in this command can take the following values:
v destination = spid | iduc_channel

v spid = integer_expression (The literal client connection ID)
v iduc_channel = string_expression (Channel name)
v string_expression = Descriptive text to be sent as a message

Example
create trigger notify_isqlconn
group default_triggers
priority 1
on signal connect
begin
if(%signal.process = ’isql’)
then
iduc sndmsg ’notif_isql’, ’ISQL Connection from ’ +
%signal.node + ’ from user ’ +
%signal.username + ’ at ’ +
to_char(%signal.at)

end if;
end;

Chapter 5. ObjectServer SQL 255

Modifying a trigger (ALTER TRIGGER command)
Use the ALTER TRIGGER command to change the settings of an existing trigger.
You can change more than one setting in a single ALTER TRIGGER command.

Syntax
ALTER TRIGGER trigger_name
SET PRIORITY integer
SET ENABLED { TRUE | FALSE }
SET GROUP trigger_group_name
SET DEBUG { TRUE | FALSE };

Use SET PRIORITY to change the priority of a trigger to a value between 1 and 20.
The lower the number, the higher the priority.

Use SET ENABLED TRUE to activate a trigger or SET ENABLED FALSE to
deactivate a trigger. If a trigger is ENABLED, it fires when the associated incident
occurs. If a trigger is not ENABLED, it does not fire when the associated incident
occurs.

Use SET GROUP to change the trigger group of the trigger to the specified group
name.

Use SET DEBUG to turn debugging on or off for the trigger. If on, debugging
information is sent to the ObjectServer message log, if the message level is set to
debug.

Example
alter trigger mytrig set priority 1;

Deleting a trigger (DROP TRIGGER command)
Use the DROP TRIGGER command to drop an existing trigger.

Syntax
DROP TRIGGER trigger_name;

You cannot drop a trigger if it has any dependent objects.

Example
drop trigger mytrig;

Standard Tivoli Netcool/OMNIbus automations
A set of standard automations is included with Tivoli Netcool/OMNIbus. These
automations are created during database initialization.

The standard automations are stored in the location: $NCHOME/omnibus/etc/
automation.sql. You can open the automation.sql file within a text editor and
view the syntax of each automation. Comments are included to describe the
purpose of the automations. Some of the automations in the automation.sql file
are not enabled by default.

You can also use the Netcool/OMNIbus Administrator to browse through these
automations by selecting the Automation menu button from the
Netcool/OMNIbus Administrator window. You might notice that some trigger
groups are disabled by default, whereas the triggers belonging to that trigger
group have an enabled state. You must enable such trigger groups in order to run

256 IBM Tivoli Netcool/OMNIbus: Administration Guide

the triggers. One such example is the audit_config trigger group, which provides
the ability to raise alerts whenever changes are made to the ObjectServer objects.
This trigger group can be used as an audit mechanism in conjunction with the
audit log files that are written to the $NCHOME/omnibus/log directory.

The functions performed by some of the standard automations include:
v Backing up the ObjectServer
v Adding alerts to the ObjectServer
v Inserting journal entries
v Removing redundant entries from various tables

The standard automations are listed in the following table.

Table 79. Standard automations

Trigger or procedure name Description

audit_config_alter_class Creates an alert indicating that a class has been
altered.

audit_config_alter_col_visual Creates an alert indicating that a column visual has
been altered.

audit_config_alter_conv Creates an alert indicating that a conversion has been
altered.

audit_config_alter_menu Creates an alert indicating that a menu has been
altered.

audit_config_alter_object Creates an alert indicating that an object has been
altered.

audit_config_alter_prompt Creates an alert indicating that a prompt has been
altered.

audit_config_alter_property Creates an alert indicating that a property has been
altered.

audit_config_alter_tool Creates an alert indicating that a tool has been
altered.

audit_config_create_class Creates an alert indicating that a class has been
created.

audit_config_create_col_visual Creates an alert indicating that a column visual has
been created.

audit_config_create_conv Creates an alert indicating that a conversion has been
created.

audit_config_create_menu Creates an alert indicating that a menu has been
created.

audit_config_create_object Creates an alert indicating that an object has been
created.

audit_config_create_prompt Creates an alert indicating that a prompt has been
created.

audit_config_create_tool Creates an alert indicating that a tool has been
created.

audit_config_drop_class Creates an alert indicating that a class has been
dropped.

audit_config_drop_col_visual Creates an alert indicating that a column visual has
been dropped.

Chapter 5. ObjectServer SQL 257

Table 79. Standard automations (continued)

Trigger or procedure name Description

audit_config_drop_conv Creates an alert indicating that a conversion has been
dropped.

audit_config_drop_menu Creates an alert indicating that a menu has been
dropped.

audit_config_drop_object Creates an alert indicating that an object has been
dropped.

audit_config_drop_prompt Creates an alert indicating that a prompt has been
dropped.

audit_config_drop_tool Creates an alert indicating that a tool has been
dropped.

audit_config_permission_denied Creates an alert indicating that a permission has been
denied.

automatic_backup Backs up all ObjectServer memory stores to a
sequence of locations dependent on the defined value
of a num_backups variable.

automation_disable Disables the automations that should not be running
when the ObjectServer is a backup ObjectServer.

automation_enable Enables the automations that should be running
when the ObjectServer is a primary ObjectServer.

backup_counterpart_down Enables the automations that should be running
when the primary ObjectServer goes down, and the
backup ObjectServer is acting as the primary
ObjectServer.

backup_counterpart_up Disables the automations that should not be running
in the backup ObjectServer when the primary
ObjectServer restarts.

backup_failed Specifies an action to perform on a failed backup
operation.

backup_startup Disables the automations that should not be running
when an ObjectServer designated as a backup, is
started.

backup_state_integrity Ensures that only one record is present in the backup
state table by cancelling any other inserts.

backup_succeeded Specifies an action to perform on a successful backup
operation.

clean_details_table Performs housekeeping cleanup on the alerts.details
table. Deletes any entries not found in the
alerts.status table.

clean_journal_table Performs housekeeping cleanup on the alerts.journal
table. Deletes any entries not found in the
alerts.status table.

connection_watch_connect Creates an alert when a new client connects. The
process or application name identified by the signal is
matched against the alerts.application_types table to
identify the appropriate severity and event type for
the connect. A gateway connection, for example, is
treated as a resolution (clearing a disconnect),
whereas an event list connect is a Type 1 event,
which will be resolved by a disconnect.

258 IBM Tivoli Netcool/OMNIbus: Administration Guide

Table 79. Standard automations (continued)

Trigger or procedure name Description

connection_watch_disconnect Creates an alert when a client disconnects. The
process or application name identified by the signal is
matched against the alerts.application_types table to
identify the appropriate severity and event type for
the disconnect. A gateway disconnection, for example,
is treated as a problem, whereas an event list
disconnection is a resolution.

dedup_status_inserts Counts deduplicated status table inserts.

deduplicate_details Deduplicates rows on the alerts.details table.

deduplicate_iduc_stats Deduplicates rows on the iduc_system.iduc_stats
table.

deduplication Deduplication processing for the alerts.status table.
Maintains the deduplication tally and refreshes alert
details.

delete_clears Every 60 seconds, deletes clear alerts that are older
than two minutes in the alerts.status table.

details_inserts Counts details table inserts.

disable_inactive_users Runs once a day to disable users who have not
logged on to the ObjectServer within a defined
period.

disable_user Disables users when they fail to log on after n
consecutive failures.

disconnect_iduc_missed Disconnects real-time clients that have not
communicated with the ObjectServer for 100
granularity periods.

escalate_off Sets Flash field to 0 (not flashing) and SuppressEscl
to 0 (not escalated in this example) when an event
that has previously had the Flash field set to 1 is
Acknowledged or if the event is Cleared (Severity =
0).

expire Handles the expiration of alerts. Sets the Severity of
an alert to 0 if the value of ExpireTime (during which
the alert is valid) is exceeded.

flash_not_ack Sets Flashing on (Flash = 1) for events that are 10
minutes old and Critical (Severity = 5), but which
have not yet been acknowledged by a user
(Acknowledge = 0). It sets SuppressEscl to 1 as a
further indication of the escalation status of the event.

generic_clear Clears (Severity = 0) all rows in the alerts.status table
indicating a down device (Type = 1), where there is a
subsequently inserted row indicating that the device
has come back up (Type = 2).

iduc_messages_tblclean Performs housekeeping cleanup on the
alerts.iduc_messages table. Runs every 60 seconds
and deletes messages older than two minutes.

iduc_stats_insert Inserts a client entry into the iduc_system.iduc_stats
table when the iduc_connect signal is raised.

iduc_stats_update Updates the LastIducTime field in the
iduc_system.iduc_stats table when the
iduc_data_fetch signal is raised.

Chapter 5. ObjectServer SQL 259

Table 79. Standard automations (continued)

Trigger or procedure name Description

jinsert Inserts a record into the alerts.journal table.
Automations that require journal entries should run
this procedure.

journal_inserts Counts journal table inserts.

mail_on_critical Send e-mail about critical alerts that are
unacknowledged after 30 minutes.
Note: This tool is UNIX specific unless an equivalent
NT mailer is available.

new_row Sets default values for new alerts in the alerts.status
table.

new_status_inserts Counts new status table inserts.

pass_deletes Deletes from the destination ObjectServer, rows that
do not exist in the source ObjectServer, after
resynchronization.

profiler_group_report Writes to the profiler_report file, a row for the sum
of the amount of time taken by each distinct
application type during the last profiling period.

profiler_report Writes into the profiler_report file, a row for each
connected client with the amount of time taken by
that client during the last profiling period.

profiler_toggle Reports that the profiler has been toggled.

registry_new_probe A pre-insert trigger that links a probe entry in the
registry.probes table with the corresponding entry in
the catalog.connections table.

registry_probe_disconnect Deletes probe entries from the registry.probes table
when a probe or proxy server disconnects from the
ObjectServer.

registry_reinsert_probe Updates entries in the registry.probes table in
response to reinsert statements that come from a
probe. All columns in an entry are updated. The
LastUpdate column records the time stamp of the
update.
Note: This trigger only accepts reinserts from probes.
Other applications must use an UPDATE statement to
modify existing entries in the registry.probes table.

reset_user Resets the failure count of a user when they log on
successfully.

resync_finished Identifies when resynchronization is complete and
sets the ActingPrimary property of the backup
ObjectServer to FALSE to define it as the backup.

security_watch_security_failure Creates an alert when a client fails to authenticate.

service_insert Service processing for the service.status table.

service_reinsert Service processing for the service.status table.

service_update Service processing for the service.status table.

state_change State change processing for the alerts.status table.
Maintains the ObjectServer timestamp of the last
insert and update of an alert from any source.

statistics_cleanup Deletes statistics over an hour old.

260 IBM Tivoli Netcool/OMNIbus: Administration Guide

Table 79. Standard automations (continued)

Trigger or procedure name Description

statistics_gather Collects metrics such as the total number of clients
that are connected to the ObjectServer, the number of
real-time clients, and the number of new inserts into
the alerts.status table, and inserts the metrics into the
master.stats table.

This data can then be viewed using
Netcool/OMNIbus Administrator or nco_sql, or can
be written to file, or processed by other automations.

stats_reset Resets the statistics data.

system_watch_shutdown Creates an alert indicating that the ObjectServer is
being shut down.

system_watch_startup Creates an alert indicating that the ObjectServer has
started.

trigger_stats_report Writes to the trigger_stats.log file, the amount of
time each trigger has used in the last profiling period.

update_service_affecting_events Runs at a specified frequency to enable
service-affected events in Network Manager IP
Edition to automatically clear when all their related
events are cleared. A service-affected event is an alert
that warns operators that a critical customer service
has been affected by one or more network events.

This automation works only with Tivoli
Netcool/OMNIbus V7 .0, or later.
Tip: The automation is required only if Network
Manager IP Edition is being used, and is used with
the precision.entity_service, precision.service_details,
and precision.service_affecting_event tables.

webtop_compatibility Populates the master.profiles table with ObjectServer
users for the Web GUI (or Netcool/Webtop) to read.
Additionally sets the AllowISQL field for each user
who has been granted permission to use the
interactive SQL tool in the Web GUI (or
Netcool/Webtop).

Automation for service-affected events
A service-affected event (SAE) is an alert that warns operators that a critical
customer service has been affected by one or more network events. Service-affected
events are generated within IBM Tivoli Network Manager IP Edition.

You can configure Tivoli Netcool/OMNIbus to run an automation at a specified
frequency to enable service-affected events in Network Manager IP Edition to
automatically clear when all their related events are cleared.

To make this feature operational for an installation of Network Manager IP Edition
and Tivoli Netcool/OMNIbus, you must configure Network Manager IP Edition as
described in the IBM Tivoli Network Manager IP Edition Installation and Configuration
Guide, SC27-2760-00. When you install Tivoli Netcool/OMNIbus, the following
required Objectserver objects are added, to support SAE operation:
v Database tables for SAE application usage: precision.entity_service,

precision.service_details, precision.service_affecting_events

Chapter 5. ObjectServer SQL 261

v The NmosEntityId field to the alerts.status table
v An sae trigger group and the update_service_affecting_events trigger

The update_service_affecting_events trigger automation works only with Tivoli
Netcool/OMNIbus V7 .0, or later.

v Event list tools for managing service-affected events on UNIX and Windows

From the Tivoli Netcool/OMNIbus event list, you can monitor service-affected
events as follows:
v To show the underlying events (for example, linkDowns) that are associated

with a service-affected event, select the service-affected event, right-click it and
then click Show SAE Related Events from the pop-up menu. All the events that
are associated with the selected event are displayed in a new window.

v To show the service-affected events to which an event (for example, a linkDown)
is related, select the event, right-click it and then click Show SAE Related
Services from the pop-up menu. A list of all related service-affected events is
displayed in a new window. For example, if you selected a linkDown event in
the event list, this window displays all the services that are affected by that
linkDown event.

Automation examples
This topic contains examples of some commonly performed automations.

Example: Trigger to deduplicate the status table
This database trigger intercepts an attempted reinsert on the alerts.status table and
increments the tally to show that a new row of this kind has arrived at the
ObjectServer. It also sets the LastOccurrence field.
create or replace trigger deduplication
group default_triggers
priority 1
comment ’Deduplication processing for ALERTS.STATUS’
before reinsert on alerts.status
for each row
begin
set old.Tally = old.Tally + 1;
set old.LastOccurrence = new.LastOccurrence;
set old.StateChange = getdate();
set old.InternalLast = getdate();
set old.Summary = new.Summary;
set old.AlertKey = new.AlertKey;
if ((old.Severity = 0) and (new.Severity > 0))

then set old.Severity = new.Severity;
end if;
end;

Example: Trigger to deduplicate the details table
This database trigger intercepts an attempted reinsert on the alerts.details table.
create or replace trigger
deduplicate_details
group default_triggers
priority 1
comment ’Deduplicate rows on alerts.details’
before reinsert on alerts.details
for each row
begin
cancel; -- Do nothing. Allow the row to be discarded
end;

262 IBM Tivoli Netcool/OMNIbus: Administration Guide

Example: Trigger to clean the details table
This temporal trigger periodically clears detail entries in the alerts.details table
when no corresponding entry exists in the alerts.status table.
create or replace trigger
clean_details_table
group default_triggers
priority 1
comment ’Housekeeping cleanup of ALERTS.DETAILS’ every 60 seconds
begin
delete from alerts.details

where Identifier not in (select Identifier from alerts.status);
end;

Example: Trigger to set the alerts table StateChange column
When a row in the alerts.status table is modified, this database trigger updates the
StateChange column to time stamp the change.
create or replace trigger state_change
group default_triggers
priority 1
comment ’State change processing for ALERTS.STATUS’
before update on alerts.status
for each row
begin
set new.StateChange = getdate;
end;

Example: Trigger to delete clear rows
This temporal trigger deletes all clear rows (Severity = 0) from the alerts.status
table that have not been modified within the last two minutes.
create or replace trigger delete_clears
group default_triggers
priority 1
comment ’Delete cleared alerts over 2 minutes old every 60 seconds’
every 60 seconds
begin
delete from alerts.status where Severity = 0 and StateChange < (getdate() - 120);
end;

Example: Trigger to send e-mail notifications for critical alerts
This temporal trigger sends e-mail, by calling an external procedure, if any critical
alerts are not acknowledged within 30 minutes.
create or replace trigger mail_on_critical
group default_triggers
enabled false
priority 1
comment ’Send email about critical alerts that are
unacknowledged after 30 minutes. NOTE This tool is
UNIX specific unless an equivalent NT mailer is available.’
every 10 seconds
begin

for each row critical in alerts.status where critical.Severity = 5 and
critical.Grade < 2 and critical.Acknowledged = 0 and
critical.LastOccurrence <= (getdate() - (60*30))

begin
execute send_email(critical.Node, critical.Severity, ’Netcool Email’,
’root@localhost’, critical.Summary, ’localhost’);
update alerts.status via critical.Identifier set Grade=2;

end;
end;

The send_email external procedure is declared as follows, and calls the nco_mail
utility:

Chapter 5. ObjectServer SQL 263

create or replace procedure send_email
(in node character(255), in severity integer, in subject character(255),
in email character(255), in summary character(255), in hostname character(255))
executable ’$NCHOME/omnibus/utils/nco_mail’ host ’hostname’ user 0 group 0
arguments ’\’’ + node + ’\’’, severity, ’\’’ + subject + ’\’’,
’\’’ + email + ’\’’, ’\’’ + summary + ’\’’;

This example also shows how to pass text strings to an executable. Strings must be
enclosed in quotation marks, and the quotation marks must be escaped with
backslashes. All quotation marks in this example are single quotation marks.

Example: Trigger to truncate a file
Fix Pack 1

When a user-defined or system signal is raised, this signal trigger truncates a file.
This trigger is useful if you want files to be truncated when the ObjectServer starts,
for example if files were archived after the last shutdown and are now no longer
needed.

The following example trigger truncates a file when a signal trigger is raised:
create trigger example_t
group default_triggers
priority 1
on signal example_signal
begin

alter file example_file truncate;
end;

Where example_t is the name of the trigger, example_signal is the name of the signal,
and example_file is the name of the file.
Related reference:
“Altering a file” on page 177
Use the ALTER FILE command to change the configuration of an existing
ObjectServer file.

Example: Procedure to insert a journal entry for triggers
The jinsert procedure enables you to insert rows into the alerts.journal table.
Automations that require journaling entries call the procedure, and pass in the
serial number of the row, the user ID of the user making the change (if applicable),
the time when the action occurred, and any descriptive text for the action being
journaled.
create or replace trigger
trigger_name
group default_triggers
priority 10
before delete on alerts.status
for each row
begin
execute jinsert(old.Serial, %user.user_id, getdate(), ’string’);
end;

In this automation, trigger_name is a variable representing the name of the trigger,
and string is the journal entry text.

264 IBM Tivoli Netcool/OMNIbus: Administration Guide

Chapter 6. Configuring accelerated event notification

You can configure Tivoli Netcool/OMNIbus for accelerated event notification of
events that could present a risk to the system. The Accelerated Event Notification
(AEN) system provides a means of accelerating high-priority events to help ensure
that systems can continue to run without interruption.

When configuring accelerated event notification, use the following guidelines:
v Determine the conditions under which you want to accelerate events. Consider

whether to use the probe rules file to flag events for acceleration, or whether to
set up conditions within a post-insert, post-update, or post-reinsert trigger in the
ObjectServer.
If the conditions under which events should be accelerated are set up in the
rules file, and are complex, you might need to configure the alerts.status table
with a dedicated column to receive a flag that identifies an event as an
accelerated event.
Typically, you can run a post-insert trigger on inserted events to determine
whether they meet the conditions for acceleration, or run a post-update trigger
on updated events that have been enriched with information from other sources,
or run a post-reinsert trigger to escalate repeating events.

v Determine whether you require a dedicated gateway for forwarding accelerated
events. Consider the use of a dedicated gateway if you want to eliminate the
possibility of unexpected delays caused by high volumes of events, which may
largely be non-critical, or if you want to send accelerated events to a different
ObjectServer than that used for normal IDUC updates. If using a dedicated
gateway, you must configure that gateway to replicate only accelerated inserts
and updates.

You also need to use Netcool/OMNIbus Administrator to configure accelerated
event notification, as follows:
v Set up a dedicated event column to flag an event for acceleration, if required.
v Set up channels to define the type of event data to be included in accelerated

event notifications, and the recipients of this event data.
v Configure post-insert, post-update, or post-reinsert triggers to act on accelerated

events that are inserted or updated in the alerts.status table.

For information on monitoring and managing accelerated events, see the IBM Tivoli
Netcool/OMNIbus User's Guide.

Configuring a probe to flag events for acceleration
If the conditions for accelerated event notification are complex, determine whether
to set up the conditions within the probe rules file.

About this task

You might also need to add a dedicated event column to the alerts.status table to
flag events for acceleration, and use this field in your probe rules file.

The following sample probe rules file depicts how an event stream can be parsed
in order to determine which events are considered high priority. At the top of the

© Copyright IBM Corp. 1994, 2013 265

rules file, elements (indicated by the $ symbol) are assigned to ObjectServer fields
(indicated by the @ symbol). The conditional statement uses the $Summary
element to set the AlertKey and FastTrack values in the alerts.status table.

The statement translates to: if the Summary value begins with 'Port failure', then
insert the port number value into the AlertKey field in the alerts.status table, and
insert a value of 1 into the FastTrack field in the alerts.status table. Otherwise, if
the Summary value begins with the string 'Diskspace', insert the concatenated
percent value and % full string into the AlertKey field in the alerts.status table.
@Manager = "Simnet Probe"
@Class = 3300
@Node = $Node
@Agent = $Agent
@AlertGroup = $Group
@Summary = $Summary
@Severity = $Severity
@Identifier = $Node + $Agent + $Severity + $Group

if (nmatch($Summary, "Port failure"))
{
@AlertKey = $PortNumber
@FastTrack = 1
}
else if (nmatch($Summary, "Diskspace"))
{
@AlertKey = $PercentFull + "% full"
}

Configuring a gateway for accelerated event notification
You can choose to use a dedicated gateway to forward accelerated events mainly
for performance reasons or to send the events to a particular ObjectServer. If using
a dedicated gateway, you must update its table replication definition file so that
only accelerated inserts and updates are replicated forward.

About this task

To configure a unidirectional ObjectServer gateway for accelerated event
notification:

Procedure
1. Open the following gateway table replication definition file:

$OMNIHOME/gates/objserv_uni/objserv_uni.reader.tblrep.def

2. Locate the following lines:
REPLICATE ALL FROM TABLE ’alerts.status’ USING MAP ’StatusMap’;
REPLICATE ALL FROM TABLE ’alerts.journal’ USING MAP ’JournalMap’;
REPLICATE ALL FROM TABLE ’alerts.details’ USING MAP ’DetailsMap’;

3. Replace these three lines with the following single line:
REPLICATE FT_INSERT,FT_UPDATE FROM TABLE ’alerts.status’ USING MAP ’StatusMap’;

4. Save the file.

What to do next

For a bidirectional gateway, you must modify the corresponding files in a similar
manner. The gateway table replication definition file for a bidirectional gateway is
$OMNIHOME/gates/objserv_bi/objserv_bi.reader.tblrep.def.

266 IBM Tivoli Netcool/OMNIbus: Administration Guide

Configuring the alerts.status table to receive the AEN flag
If you have configured your probe rules file with a flag for accelerated event
notification, you might need to add a column to support the acceleration of events,
to the alerts.status table.

About this task

For example, from Netcool/OMNIbus Administrator, add a column with a
Column Name of FastTrack and a Data Type of Integer.
Related tasks:
“Adding and editing table columns” on page 136
You can add new columns to ObjectServer tables or edit existing columns. The
maximum number of columns in a table is 512, excluding the system-maintained
columns. The maximum row size for a table, which is the sum of the length of the
columns in the row, is 64 KB. You cannot add PRIMARY KEY columns to existing
tables.
Related reference:
“Altering a table” on page 165
Use the ALTER TABLE command to change the characteristics of an existing table
and its columns. You can add, drop, and alter columns.

Configuring channels to broadcast event data
When configuring accelerated event notification, you must use channels to define
the type of event data to broadcast in the accelerated event notifications, and the
recipients of this data. You can set up multiple channels with varied event data
and recipients.

Channel administration is permitted only for users with the ChannelAdmin role.

The event data for channels is derived from columns in the ObjectServer tables.

Tip: The columns that you choose for a channel should contain sufficient summary
data to help operators interpret critical issues at first glance, when such issues are
forwarded to the screen as pop-up notifiers. Operators can then click across to the
desktop event list or the Web GUI Active Event List to obtain full details for the
event and to manage the event.

Note that click-across functionality from a pop-up notifier to the event list or the
Active Event List is available only for events in the alerts.status table.

Creating and editing channels
You must create channels on an ObjectServer from which the accelerated events
will be forwarded.

Before you begin

You must be connected to the ObjectServer on which you want to create a channel.

About this task

To create or edit a channel:

Chapter 6. Configuring accelerated event notification 267

Procedure
1. From the Netcool/OMNIbus Administrator window, select the System menu

button.
2. Click Channels. The Channels pane opens.
3. To add a channel, click Add Channel in the toolbar. The Channel Details

window opens.
4. To edit a channel, select the channel to edit and then click Edit Channel in the

toolbar. The Channel Details window opens.
5. Define the channel as follows:

Name Type a unique name for the channel. If you are editing a channel, you
cannot change the name.

Description
Type meaningful text that summarizes the function of the channel.

6. From the Columns tab, specify which columns you want to include in the
channel definition. Complete the tab as follows:

Add new Channel Columns
Click this button to add columns to the channel. The Channel Column
Details window opens. Complete this window as follows, and then
save your changes:

Table From the left list, select an ObjectServer database. From the
right list, select a table in that database.

If you are editing channel columns, you cannot change the
database or table name.

Restriction: Currently, support is available only for events in
the alerts.status table.

Columns: Available
This list is populated with the names of columns that are
defined in the selected database table, and which you can
assign to the channel. To assign one or more of these columns,
use the arrow keys to move the columns to the Selected list.

To move all columns to the Selected list, click >>. To move a
single column or multiple columns to the Selected list, select
each column and then click >. You can use the SHIFT key for
consecutive selections, or the CTRL key for non-consecutive
selections.

You can also double-click a column to move it from the
Available list to the Selected list. Columns are added to the
end of the Selected list.

Columns: Selected
This list contains the columns that are included in the channel
definition. To remove columns from the channel definition, use
the arrow keys to move the columns to the Available list.

To move all columns to the Available list, click <<. To move a
single column or multiple columns to the Available list, select
each column and then click <. You can use the SHIFT key for
consecutive selections, or the CTRL key for non-consecutive
selections.

268 IBM Tivoli Netcool/OMNIbus: Administration Guide

You can also double-click a column to move it from the
Selected list to the Available list.

Use the arrow buttons to the right of the Selected list to specify
the position of the column data within the pop-up notifier in
the accelerated event notification client. The Selected list
displays the following default markers to indicate the position
of the column data:
v H: Heading
v F: First Line
v S: Second Line
v M: Main Message
v N: Note

To change the position of a column, select it and then click the
relevant arrow button. Use the arrow buttons as follows:

Table 80. Arrow buttons

Button Description

Moves the selected column to the top of the
Selected list.

Moves the selected column one position up
in the Selected list.

Moves the selected column one position
down in the Selected list.

Moves the selected column to the bottom of
the Selected list.

When you return to the Columns tab in the Channel Details window,
your column selections are shown within a single row. (You cannot add
more than one row.)

Edit selected Channel Columns
Click this button to edit the column definition for the channel. Select
the row in the Columns tab and then click the button. The Channel
Column Details window opens. Amend your column selections within
this window and then save your changes to return to the Columns tab.

Delete selected Channel Columns
Use this button to delete a column definition for the channel. Select the
row in the Columns table and then click Delete. When prompted,
confirm the deletion. Your changes are reflected in the Columns tab.

7. From the Recipients tab, specify the user or group of users to whom the
channel data should be sent. Complete the tab as follows:

Add new Channel Recipient
Click this button to specify recipients for the channel information. The
Channel Recipient Details window opens. Complete this window as
follows, and then save your changes:

isGroup
Select this check box to indicate that the channel recipients are
a group of users. Clear this check box if the channel recipient is
a single user.

Name This list works in conjunction with the isGroup check box, and
is populated either with a list of all users or a list of all groups

Chapter 6. Configuring accelerated event notification 269

in the ObjectServer. Select the name of the user or group who
should receive the channel data.

Hostname
Type the name of the connected host. You can use regular
expressions to filter on connections that match this value. Leave
the field blank for a match on any host name. For example,
enter the regular expression *test* to match any host with the
string test in its name.

Application Name
Type the name of an application that is connected to the
ObjectServer. You can use regular expressions to filter on
connections that match your entry. For example, *event*
indicates match any host with the string event in its name.
Leave this field blank to match on any application name.

Application Description
Type an application description. You can use regular
expressions to filter on connections that match your entry. For
example, *real time* matches any host with the string real
time in its application description. Leave this field blank to
match on any application description.

When you return to the Recipients tab in the Channel Details window,
the recipient details are shown in a single row. (You can add further
rows of recipients.)

Edit the selected Channel Recipient
Click this button to edit the recipient details for any selected row in the
Recipients tab. The Channel Recipient Details window opens. Amend
the recipient details and save your changes to return to the Recipients
tab.

Delete the selected Channel Recipient
Use this button to remove recipients from the channel definition. Select
the row of recipients that you want to remove and then click this
button. When prompted, confirm the deletion. Your changes are
reflected in the Recipients tab.

8. Save or cancel your changes as follows:

OK Click this button to save the channel details and close the window.
New channels are added to the Channels pane.

Cancel
Click this button to close the window without saving your changes.

Copying and pasting channels
You can use one channel as a template for another by copying and pasting the
channel definition. This is useful if you want to create channels with slight
variations in their definitions.

About this task

Restriction: You cannot copy and paste between ObjectServers.

To copy and paste a channel:

270 IBM Tivoli Netcool/OMNIbus: Administration Guide

Procedure
1. From the Netcool/OMNIbus Administrator window, select the System menu

button.
2. Click Channels. The Channels pane opens.
3. To copy a channel, select the channel from the Channels pane and then click

Copy in the toolbar.
4. To paste the channel, click Paste in the toolbar. The New Channel window

opens.
5. Enter a unique name for the channel.
6. Confirm or cancel your actions as follows:

v Click OK to create the new channel with an identical channel definition as
the selected channel. The Channel Details window then opens so that you
can make the required changes to this new channel.

v Click Cancel to cancel the copy-and-paste action.

Deleting a channel

About this task

To delete a channel:

Procedure
1. From the Netcool/OMNIbus Administrator window, select the System menu

button.
2. Click the Channels icon. The Channels window opens.
3. Select the channel that you want to delete and click Delete in the toolbar. The

channel is deleted.

Sending messages to channel recipients
You can send messages to channel recipients who are currently running the
Accelerated Event Notification client.

About this task

You can send messages to recipients listening on a single channel, or on multiple
channels.

To send messages:

Procedure
1. From the Netcool/OMNIbus Administrator window, select the System menu

button.
2. Click Channels. The Channels pane opens.
3. From the Channels pane, select one or more channels that are associated with

the message to be sent. You can use the Shift key for consecutive selections or
the Ctrl key for non-consecutive selections.

4. From the toolbar, click Send Message. The Send Message window opens.
5. Type a text message in the Message Text field. This field scrolls horizontally to

allow for the entry of text.
6. Confirm or cancel your actions as follows:

Chapter 6. Configuring accelerated event notification 271

v Click OK to initiate the send action and then confirm that you want to send
the message by clicking Yes.

Note: If the Message Text field is blank, no message is sent.
v Click Cancel to cancel the send action.

Results

The message is displayed in a message box on all relevant Accelerated Event
Notification client screens. The message text word wraps at 120 characters. If you
sent the message to multiple channels, a client listening on more than one of these
channels receives the message once only.

Disconnecting Accelerated Event Notification clients
If you need to perform minor maintenance on the ObjectServer, such as
resynchronization, you can remotely disconnect (or sign out) the Accelerated Event
Notification clients that are currently running. As part of the disconnect action, you
can enter a brief message to users with relevant information.

About this task

To disconnect Accelerated Event Notification clients that are listening on one or
more channels:

Procedure
1. From the Netcool/OMNIbus Administrator window, select the System menu

button.
2. Click Channels. The Channels pane opens.
3. From the Channels pane, select one or more channels that are associated with

the disconnect action. You can use the Shift key for consecutive selections or
the Ctrl key for non-consecutive selections.

4. From the toolbar, click Disconnect Clients. The Send Disconnect Command
window opens.

5. Enter a text message in the Reason for Disconnect field. This field scrolls
horizontally to allow for the entry of text.

6. Confirm or cancel your actions as follows:
v Click OK to initiate the disconnect action and then confirm that you want to

disconnect by clicking Yes.

Note: If the Reason for Disconnect field is blank, the clients will disconnect,
but no reason for the action is given in the message box.

v Click Cancel to cancel the disconnect action.

Results

After you confirm the disconnect action, any message that you entered is displayed
in a message box on all relevant Accelerated Event Notification client screens. The
message text word wraps at 120 characters. An automatic sign-out then occurs. The
status indicator of the Accelerated Event Notification clients reflects the signed out
state, although the clients continue to run in the background.

272 IBM Tivoli Netcool/OMNIbus: Administration Guide

Shutting down Accelerated Event Notification clients
If you need to shut down the ObjectServer, you can remotely shut down the
Accelerated Event Notification clients that are currently running. As part of
shutting down, you can enter a brief message to users with relevant information.

About this task

To shut down Accelerated Event Notification clients that are listening on one or
more channels:

Procedure
1. From the Netcool/OMNIbus Administrator window, select the System menu

button.
2. Click Channels. The Channels pane opens.
3. From the Channels pane, select one or more channels that are associated with

the shutdown action. You can use the Shift key for consecutive selections or the
Ctrl key for non-consecutive selections.

4. From the toolbar, click Shutdown Clients. The Send Shutdown Command
window opens.

5. Enter a text message in the Reason for Shutdown field. This field scrolls
horizontally to allow for the entry of text.

6. Confirm or cancel your actions as follows:
v Click OK to initiate the shutdown action and then confirm that you want to

shut down by clicking Yes.

Note: If the Reason for Shutdown field is blank, the clients will shut down,
but no reason for the action is given in the message box.

v Click Cancel to cancel the shutdown action.

Results

After you confirm the shutdown action, any message that you entered is displayed
in a message box on all relevant Accelerated Event Notification client screens. The
message text word wraps at 120 characters. After five seconds, an automatic
sign-out and exit then occurs.

Configuring triggers to support accelerated event notification
To support accelerated event notification, create post-insert, post-update, or
post-reinsert triggers that are attached to the alerts.status table. In the triggers, set
up conditions to define or identify accelerated events when they are inserted or
updated in the alerts.status table, and to forward such events to the relevant
Accelerated Event Notification clients.

About this task

Two SQL commands are available for use with your triggers: an event fast-track
(or accelerated event) command (IDUC EVTFT) and a send message command
(IDUC SNDMSG).

Tip: You might find it useful to group triggers that support accelerated event
notification within their own trigger group.

Chapter 6. Configuring accelerated event notification 273

Related concepts:
“Configuring automation using triggers” on page 231
You can use automation to detect changes in the ObjectServer and run automated
responses to these changes. This enables the ObjectServer to process alerts without
requiring an operator to take action. You can also use automation to manage
deduplication, which reduces the quantity of data held in the ObjectServer by
eliminating duplicate events.
“Configuring triggers” on page 105
You can create and edit triggers from the default Netcool/OMNIbus Administrator
windows, or by using an SQL script. You can create an SQL script in an external
text editor. There are three types of triggers: database triggers, signal triggers, and
temporal triggers.
Related reference:
“Activating accelerated event notification (IDUC EVTFT command)” on page 254
Use the IDUC EVTFT command to activate pop-up notifiers for accelerated events
to be sent to clients, and to enable click-across functionality to the desktop event
list or the Web GUI Active Event List.
“Sending messages to AEN clients (IDUC SNDMSG command)” on page 255
Use the IDUC SNDMSG command to send information messages to an Accelerated
Event Notification client.

274 IBM Tivoli Netcool/OMNIbus: Administration Guide

Chapter 7. Using process control to manage processes and
external procedures

The Tivoli Netcool/OMNIbus process control system performs two primary tasks.
It manages local and remote processes, and runs external procedures that are
specified in automations.

You can use process control to simplify the management of Tivoli
Netcool/OMNIbus components such as ObjectServers, probes, and gateways. You
can install process agents on each host and configure them to manage processes.
The configured process agents cooperate automatically and understand their own
configuration. They start processes and can keep those processes running. You can
define processes that are dependent on other processes, and processes that have
timed threshold dependencies. If a managed host is restarted, the process agent
can be configured to restart local components automatically.

The process control system includes a set of command-line utilities that provide an
interface to process management. You can configure and manage process control
either from the command line or by using Netcool/OMNIbus Administrator.

How process agents connect
You can set up a process control network system by configuring process control on
several Tivoli Netcool/OMNIbus hosts.

The process agents can then communicate with each other and run programs on
request. Process agents running on Windows operating systems can communicate
with process agents running on UNIX operating systems, and vice versa.

Running process agents in a routing configuration

When several process agents are connected by routing statements, each process
agent in the process control network can be made aware of processes in the other
process agents. A process agent configuration file is used to define processes,
services, and hosts in the process control network, and to define routing
statements.

The process control system supports full remote management of your process
agents from a single console. You can add, modify, delete, start, and stop services
and processes remotely. You can also view the status of both local and remote
processes. If using Netcool/OMNIbus Administrator to manage process control,
you can optionally save your changes to the configuration files of the process
agents.

The process agents support the dynamic addition of routing statements from
Netcool/OMNIbus Administrator. You can also add a new process agent to a
routing group as follows:
1. Copy and modify the current configuration from an existing process agent to

have visibility of the current processes.
2. Update the configuration files for each of the other process agents by adding

the new routing entry to the routing definition area in the files.

© Copyright IBM Corp. 1994, 2013 275

3. Stop each of the existing process agents and their child processes by running
the nco_pa_shutdown utility with the -option STOP setting. Then restart each
process agent in order to pick up the new routing.

Note: Service and process names must be unique within the process control
network.
Related tasks:
“Creating and starting a process control network system” on page 279
To manage process control, you must first determine your process control
configuration requirements and then perform a number of configuration tasks.
“Defining processes, services, and hosts for process control” on page 295
To run under process control, processes, services, and hosts must be defined within
a process agent configuration file. When the process agent starts, it reads this file
to establish configuration settings.
“Displaying and configuring status information for a process agent” on page 314
You can view version details for a process agent to which you are connected, and
change the logging level for messages that the process agent generates. You can
also configure host routing by adding process agents to a routing group.
Related reference:
“Displaying the status of services and processes (nco_pa_status)” on page 304
You can run the nco_pa_status utility to retrieve the status of services in the
process control system configuration. For each service, the nco_pa_status utility
returns a list of defined processes, the status of each process, and the process
identifier.
“Adding new services or processes (nco_pa_addentry)” on page 308
You can run the nco_pa_addentry utility to add new services or processes while the
process agent is running.

Host name resolution at startup
Every external automation or process under the control of a process agent must
have a specified host. The host is defined either in the process agent configuration
file, as part of a process definition, or in the external automation in the
ObjectServer.

The default process agent configuration file is $NCHOME/omnibus/etc/nco_pa.conf.

The process agent can handle host names and addresses that are specified in
different formats. This is necessary because the host details are often extracted
from data elements in an event or alert. Depending on the source of the alert, a
host might be specified as an IP address or a host name, or in some other format.

At startup, the process agent builds an internal list of all the local host's network
interfaces, resolving the name of each network interface that it finds. This list
enables the process agent to map a given host to any number of valid local
interface host names. For example, the default host name on a machine might be
“testbox” but a request might be sent to the process agent asking for a process to
be run on “testbox.company.com”, or the request might specify the IPv4 or IPv6
address of the host. In each case, the process agent must recognize that the host
referred to is the host that the process is running on.

If host name resolution (using DNS or Active Directory, for example) is slow or is
not available, the process agent might be slow to start because it must wait for a
timeout to occur on all the host names that cannot be resolved. Also, any later
process request that uses an unknown host name will not be run. Where a process

276 IBM Tivoli Netcool/OMNIbus: Administration Guide

is configured to start as a Windows service, and problems with DNS resolution
cause it to start slowly, the service can timeout on startup. All such failures are
logged. System administrators can use this information to fix any network
configuration issues on affected hosts.

Process control components
Process control consists of process agents and their associated configuration files,
processes, services, and process control utilities. Processes are organized and run in
services. Process control utilities help you to manage the process agents, processes,
and services.

Process agents
Process agents are programs that are installed on each host to manage processes in
a process control system. Any participating host must have a process agent and an
associated configuration file installed.

There can be any number of process agents on any number of hosts. Process agents
can manage any number of processes.

Processes
Processes are programs that are run by a process agent on the same workstation,
within a process control system. Processes must be defined in a service, for ease of
management.

Process control awareness

A PA aware process is one that is part of the process control configuration and is
aware of process control. All process control features, such as process
dependencies, can be used. For example, ObjectServers, proxy servers, and
ObjectServer gateways are PA aware. A process that is not PA aware can be
managed by process control, but cannot use all process control features. For
example, the Tivoli Netcool/OMNIbus desktop is not PA aware.

Dependent processes

The order in which applications are started can be important. You can use process
control to configure processes to be dependent on each other if they are in the same
service. For example, a process can be configured to start only after another process
has started and completed various startup tasks.

A PA aware process communicates with the process agent. When the process
reaches the point in its startup where it recognizes itself to be running, it sends a
message to the process agent. When the process agent receives this message, it
starts dependent processes.
Related tasks:
“Defining processes, services, and hosts for process control” on page 295
To run under process control, processes, services, and hosts must be defined within
a process agent configuration file. When the process agent starts, it reads this file
to establish configuration settings.

Chapter 7. Using process control to manage processes and external procedures 277

Services
Within a process control system, processes must be grouped together in services.
You can group related processes in a service to make them easier to manage.

After a service is correctly configured, it can be managed by process control.

You can configure a service to start automatically when the process agent starts.
Alternatively, you can start a service manually.

A service can be configured either as a master service on which other services
depend, or as a non-master service. When started automatically by process control,
master services are started before non-master services.
Related tasks:
“Defining processes, services, and hosts for process control” on page 295
To run under process control, processes, services, and hosts must be defined within
a process agent configuration file. When the process agent starts, it reads this file
to establish configuration settings.

Process control utilities
Command-line utilities are available to help you manage the process agents,
processes, and services in a process control system.

The following table lists these command-line utilities.

Table 81. Process control command-line utilities

Utility Description

nco_pa_status This utility retrieves and displays the status of
services and processes that are being controlled by
the process agent.

nco_pa_start This utility starts a service or process that is located
anywhere in the configuration.

nco_pa_stop This utility stops a service or process that is located
anywhere in the configuration.

nco_pa_shutdown This utility shuts down a process agent.

nco_pa_addentry This utility adds a service or process entry while a
process agent is running.

278 IBM Tivoli Netcool/OMNIbus: Administration Guide

Related reference:
“Displaying the status of services and processes (nco_pa_status)” on page 304
You can run the nco_pa_status utility to retrieve the status of services in the
process control system configuration. For each service, the nco_pa_status utility
returns a list of defined processes, the status of each process, and the process
identifier.
“Starting a service or process (nco_pa_start)” on page 306
You can run the nco_pa_start utility to start a service or process at any location in
the process control system configuration.
“Stopping a service or process (nco_pa_stop)” on page 307
You can run the nco_pa_stop utility to stop a service or process at any location in
the process control system configuration.
“Shutting down a process agent (nco_pa_shutdown)” on page 307
You can run the nco_pa_shutdown utility to shut down a process agent and
optionally stop associated services and processes.
“Adding new services or processes (nco_pa_addentry)” on page 308
You can run the nco_pa_addentry utility to add new services or processes while the
process agent is running.

Creating and starting a process control network system
To manage process control, you must first determine your process control
configuration requirements and then perform a number of configuration tasks.

Before you begin

Determine which Tivoli Netcool/OMNIbus components are installed and where
they are located. Ensure that you have taken into account all components and any
failover or backup systems. Tivoli Netcool/OMNIbus desktops are not managed by
process control.

About this task

A summary of the configuration tasks is as follows:

Procedure
1. If you are using the default authentication mechanism on UNIX, set up a

dedicated user group that you can use to control access to the process control
system. Assign users to this group.
On Windows, access to the process control system is governed by the
availability of a valid local or domain user account. Any account that is used to
log into the computer on which a process agent is running can also be used to
connect to the process agent, providing the user has the privilege Access this
computer from the network.

2. For each process agent, configure server communication information (that is, a
host name and port number) on the host computer and on every computer that
needs to connect to the process control network. You must configure the server
communication information in the Server Editor (or nco_xigen) before starting a
process agent.

3. Update the default process agent configuration file for each process agent by
defining processes, services, and hosts.

Chapter 7. Using process control to manage processes and external procedures 279

What to do next

When the configuration is complete, start the process agents. You can start a
process agent either manually from the command line, or automatically, when the
system starts. To start a process agent automatically, you can either use startup
scripts on UNIX, or install and configure the process agent to run as a Windows
service. Processes automatically run as defined within the configuration file for
each process agent, and process agents communicate as configured.
Related tasks:
“Configuring and managing process control from the command line” on page 294
You can define processes, services, and hosts within the process control
configuration file. You can also use command-line utilities to start, stop, and add a
service or process, display the status of services and processes, and shut down a
process agent.

Creating UNIX user groups for the process control system
The process control daemon controls who can log in to it. On UNIX, any user who
needs access to the process control system must be a member of a UNIX user
group that you identify as an administrative group for this purpose.

About this task

By default, the process control system uses UNIX user names and passwords to
grant access. When running the process agent daemon (nco_pad), you can specify
other supported authorization modes by using the -authenticate command-line
option.

You can use an existing UNIX user group or create a new one, and add process
control users to this group. If you run NIS, NIS+, or some other global information
service, this configuration must be performed by the administrator of that service.
See the documentation provided with your operating system for information about
user groups.

When you run the process control daemon, identify the administrative group with
the -admingroup command-line option. If you do not specify a group name,
process control checks to see if the user is a member of the default group
ncoadmin.

Attention: If using Pluggable Authentication Modules (PAM) for authentication,
users do not have to be a member of a UNIX user group such as ncoadmin, to
gain access to the process control system. With PAM clients, the process control
system does not validate users against a UNIX user group, and, as a result, access
is not restricted.
Related concepts:
“Services” on page 278
Within a process control system, processes must be grouped together in services.
You can group related processes in a service to make them easier to manage.
Related reference:
“Process agent command-line options” on page 283
When running the process agent with the nco_pad command, you can specify a
number of command-line options for additional configuration.

280 IBM Tivoli Netcool/OMNIbus: Administration Guide

Windows account requirements for the process control
system

On Windows, the process agent must run as an account that is an Administrator
on the local computer.

To connect to the process agent from Netcool/OMNIbus Administrator, another
process agent, the ObjectServer, or a process control utility, you need one of the
following account types:
v A local Windows user account
v A local Windows domain account
v An account in User Principal Name (UPN) format; that is,

username@DNS_domain_name

For peer-to-peer connections between process agents, be wary of using password
policies that lock out Windows accounts after a set number of attempts. Process
agents repeatedly attempt to log in if they fail to connect; therefore, the use of a
wrong password could cause your Windows accounts to be locked out very
quickly.

Configuring server communication information for process
agents

You must use the Server Editor to assign a unique server name to each process
agent and specify other communication information, and then make these details
available to each host computer in the process control network system. This
enables all process agents on all host computers to communicate with each other.

About this task

Perform the following actions to configure server communication information for
process agents:

Procedure
1. Start the Server Editor on a host computer and add a server entry for each

process agent that you want to include in the process control network system.
Save this information.

Tip: The name of a server entry must consist of 29 or fewer uppercase letters
and cannot begin with an integer. The naming convention is to also append
_PA to the name so that you can easily identify the server as a process agent in
the Server Editor. For example, if you are configuring the process agent on a
host named sfosys1, the process agent can be named SFOSYS1_PA. By default,
the first process agent installed in a configuration is named NCO_PA.

2. On UNIX, generate an interfaces file that contains the server communication
information. The interfaces file is typically named $NCHOME/etc/
interfaces.arch, where arch is the UNIX operating system name.
In a Windows environment, configure server communications on each
Windows computer.

3. On UNIX, distribute the updated interfaces file to all host workstations in the
configuration.

Chapter 7. Using process control to manage processes and external procedures 281

What to do next

See the IBM Tivoli Netcool/OMNIbus Installation and Deployment Guide for further
details on configuring server definitions in the Server Editor, and generating
interfaces files.

Updating the default process control configuration file
A process control configuration file is installed for each process agent. This file
contains definitions for each process, service, and host within the process control
system configuration.

About this task

The process control configuration file nco_pa.conf is located in the
$NCHOME/omnibus/etc directory.

Determine which processes should run under process control and identify process
dependencies. Manually edit the process control configuration file to set up your
process control definitions:

Procedure
v Create service definitions to group together related or dependent processes. This

determines the order in which processes are run.
v Create routing definitions to specify each process agent and its associated host

computer that should be included in the configuration.

Results

When the process agent is started, it reads this file to establish configuration
settings.
Related tasks:
“Defining processes, services, and hosts for process control” on page 295
To run under process control, processes, services, and hosts must be defined within
a process agent configuration file. When the process agent starts, it reads this file
to establish configuration settings.

Manually starting process agents
You can manually start process agents from the command line.

About this task

To manually start a process agent, enter the following command on the command
line of the host:

$NCHOME/omnibus/bin/nco_pad -name process_agent

In this command, process_agent is the name of the process agent, as defined in the
omni.dat file (UNIX) or sql.ini file (Windows). You can specify additional
command-line options with this command.

The process agent daemon (nco_pad) runs relative to the $NCHOME/omnibus location.

282 IBM Tivoli Netcool/OMNIbus: Administration Guide

UNIX The process agent daemon (nco_pad) follows UNIX-style quoting rules
when deciding whether to expand environment variables inside arguments for
external actions. The rules are as follows, in order of precedence:
v Double quotes (" ") inside a substring delimited by single quotes have no effect.
v Single quotes (' ') inside a substring delimited by double quotes have no effect.
v Environment variables inside single quotes are not be expanded.

See the section “Example” for more information.

Note: A new instance of the process agent cannot manage processes that were
started by another instance, and which are still running. When the process agent is
stopped and restarted, it has no knowledge of such processes, and therefore starts
new instances of them. The previous instances are left running.

Note: If you run the nco_pad command on a computer that already contains a
process agent that is installed as a Windows service, any commands that are
specified for the Windows service are merged with command-line options for
running nco_pad from the command prompt. If there is a conflict between the
options that are specified for the service, and the options that you enter at the
command prompt, the options that you enter at the command prompt take
precedence. The screen output displays the merged options.

Example

UNIX In the following example, only $B is expanded, because $B is outside of a
pair of single quotes:
’$A’$B’$C’

The following example shows how you can avoid expansion but still output
quotes. To obtain single quotes in the output, you must escape the string inside
double quotes, as follows:
"’"’$A’"’"’$B’"’"’$C’"’"

This string produces the following output:
’$A’$B’$C’

To obtain the output ’$A’$B’$C’ with no expansion, it is not sufficient to place the
string in double quotes because, according to the UNIX quoting rules, the string
would be expanded. For no expansion to take place the whole string must be
inside single quotes.

Process agent command-line options
When running the process agent with the nco_pad command, you can specify a
number of command-line options for additional configuration.

The command-line options for the $NCHOME/omnibus/bin/nco_pad command are
described in the following table. UNIX and Linux-specific command-line options,
which are not supported on Windows, are flagged in the table.

Chapter 7. Using process control to manage processes and external procedures 283

Table 82. Process agent daemon nco_pad command-line options

Command-line option Description

UNIX

Linux

-admingroup string

Specifies the name of the UNIX user group that has
administrator privileges. Members of this group can
access the process control system. The default group
name is ncoadmin.
Note: The -admingroup option is applicable only to
the UNIX authentication mode.

-apicheck If specified, Sybase API checking is enabled.

284 IBM Tivoli Netcool/OMNIbus: Administration Guide

Table 82. Process agent daemon nco_pad command-line options (continued)

Command-line option Description

-authenticate string Specifies the authentication mode to use to verify the
credentials of a user or remote process agent daemon.

Note: When in FIPS 140-2 mode, only the PAM option
can be specified for authentication.

On UNIX, the values are:

v UNIX: This is the default authentication mode,
which means that the Posix getpwnam or
getspnam function is used to verify user
credentials on UNIX platforms. Depending on
system setup, passwords are verified by using the
/etc/password file, the /etc/shadow shadow
password file, NIS, or NIS+. If the process agent is
running as a non-root user, ensure that this user
has read-access to the /etc/shadow. Check with
your system administrator to determine the best
way to obtain this access.

v PAM: If PAM is specified as the authentication
mode, Pluggable Authentication Modules are used
to verify user credentials. The service name used
by the gateway when the PAM interface is
initialized is netcool. PAM authentication is
available on Linux, Solaris, and HP-UX 11
platforms only.

v KERBEROS: If KERBEROS is specified as the
authentication mode, Kerberos IV authentication is
used to verify user credentials. This is available
only on Solaris systems with a Kerberos IV
authentication server installed.

v HPTCB: If HPTCB is specified as the authentication
mode, the HP-UX password protection system is
used. This is available only on HP trusted (secure)
systems.

v none: Authentication is not attempted. The process
agent daemon prompt accepts any login
credentials. Use this option only for testing
purposes. Do not use it on a production
environment.

On Windows, the values are:

v WINDOWS: This is the default authentication mode,
where the process agent authenticates against the
Windows account.

v none: Authentication is not attempted. The process
agent daemon prompt accepts any login
credentials. Use this option only for testing
purposes. Do not use it on a production
environment.

-configfile string Use this file name, relative to $NCHOME/omnibus, as the
configuration file, rather than the default file
$NCHOME/omnibus/etc/nco_pa.conf.

-connections integer Sets the maximum number of connections that are
available for running external actions. The default is
30.

Chapter 7. Using process control to manage processes and external procedures 285

Table 82. Process agent daemon nco_pad command-line options (continued)

Command-line option Description

-cryptalgorithm string Specifies the cryptographic algorithm to use for
decrypting passwords that were encrypted with the
nco_aes_crypt utility and then stored in the process
agent configuration file. Set the string value as
follows:

v When in FIPS 140–2 mode, use AES_FIPS.

v When in non-FIPS 140–2 mode, you can use either
AES_FIPS or AES. Use AES only if you need to
maintain compatibility with passwords that were
encrypted using the tools provided in versions
earlier than Tivoli Netcool/OMNIbus V7.2.1.

The value that you specify must be identical to that
used when you ran the nco_aes_crypt command
with the -c setting, to encrypt the passwords in the
routing definition section of the file.

Use the -cryptalgorithm command-line option in
conjunction with the -keyfile option.

-debug integer Enables debugging. The integer value specifies the
amount of debug information written to the log.
Available levels are 1 (Debug), 2 (Information), 3
(Warning), 4 (Error), and 5 (Fatal). The default is 3.

When running at debug level 1, the process agent
logs information about processes it is about to start.
This information includes the path to the program,
each of the command-line arguments, and the
effective user ID of the process. If applicable, the log
also includes the current working directory, and
additionally for UNIX, the effective group ID, and the
umask (in octal) of the process.

When running at debug level 2, the log contains a
message showing which user account the process
agent is running under.

-DNS string Specifies a value to override the host name in DNS
environments. This must be the same as the entry in
the configuration file.

-help Displays help information about the process agent
and exits.

-keyfile string Specifies the path and name of the file that contains
the key to be used for decrypting the encrypted
passwords that are stored in the process agent
configuration file.

The key file that you specify must be identical to that
used when you ran the nco_aes_crypt utility with the
-k setting, to encrypt the passwords in the routing
definition section of the file.

Use the -keyfile command-line option in conjunction
with the -cryptalgorithm option to decrypt
passwords.

286 IBM Tivoli Netcool/OMNIbus: Administration Guide

Table 82. Process agent daemon nco_pad command-line options (continued)

Command-line option Description

UNIX

Linux

-killprocessgroup

If specified, when the process agent daemon stops a
process, it also sends a signal to kill any processes in
the same operating system process group.

-logfile string Specifies an alternative log file. On UNIX, the log can
be redirected to stderr and stdout. On Windows, the
log is always written to a file.

The default log file is:

$NCHOME/omnibus/log/pa_name.log

Where pa_name is the name of the process agent
specified with the -name option.

-logsize integer Specifies the maximum log file size in KB. The
default is 1024 KB, and the minimum size is 16 KB.

-msgpoolsize integer Specifies the number of messages that are available to
the process control agent.

-name string Specifies the name of the server for this process
agent. If not specified, the default process agent name
is NCO_PA.

-newlog This option is obsolete.

The process agent always overwrites the previous log
file.

-noautostart If specified, the process agent does not start any
services automatically, even if they are set to start
automatically in the nco_pa.conf file.

-noconfig If specified, the process agent does not read the
nco_pa.conf configuration file. This forces process
control to start with no configuration information.

UNIX

Linux

-nodaemon

By default, process control forks into the background
to run as a daemon process. When -nodaemon is
specified, the process runs in the foreground.

-password string Specifies the password that is used to log into other
process agents.

UNIX

Linux

-pidfile string

Specifies the path, relative to $NCHOME/omnibus, to the
file in which the process control daemon PID is
stored. Each process agent daemon must have its
own PID file. The default is $NCHOME/omnibus/var/
pa_name.pid, where pa_name represents the name of
the process agent. Provided all process agents are
given unique names, there should be no need to
change this setting. This makes it possible to run
more than one process agent daemon on the same
computer.
Tip: On Windows, there is no restriction on the
number of process agents that can run as Windows
services on the same host.

Chapter 7. Using process control to manage processes and external procedures 287

Table 82. Process agent daemon nco_pad command-line options (continued)

Command-line option Description

UNIX

Linux

-pidmsgpool integer

Specifies the size of the signal-handling message
pool.

UNIX

Linux

-redirectfile string

Specifies a file to which the stderr and stdout
messages of processes started by the process agent
are directed. This is useful for troubleshooting
purposes.
Tip: On Windows, a similar result can be achieved
by running the process agent from the command line.
Each child process will have its own console window
in which the processing output is displayed.
Alternatively, if the process agent is running as a
Windows service, open the Services window, and
specify the following settings in the Properties
window for the service: from the Log On tab, select
Local System account and then select Allow service
to interact with desktop.

-retrytime integer Specifies the number of seconds that a process started
by process control must run to be considered a
successful start. The default retrytime is 5.

The process agent attempts to restart a process if the
process exits. If the process exits after retrytime
seconds, the process agent attempts to restart the
process immediately. If the process exits before
retrytime seconds, the process agent attempts to
restart the process at the exponential rate of 2, 4, 8,
16, 32, ..., 256 seconds. The process agent resets the
timing interval after eight attempts to start the
process.

If the process fails to run for more than retrytime
seconds, the RetryCount (specified in the process
definition) for that process is also decremented. If the
process runs successfully for at least retrytime
seconds, the RetryCount is set back to its original
value. If the RetryCount is 0, there is no limit to the
number of restart attempts.

-roguetimeout integer Specifies the time in seconds to wait for the process
to shut down. The default is 30 seconds and the
minimum is 5 seconds.

-secure If -secure is specified, all clients need to authenticate
themselves with a valid user name and password,
which are specified with the -user and -password
command-line options.

In non-FIPS 140–2 mode, login information is
automatically encrypted in transmission when the
process agent connects to another process agent. In
FIPS 140–2 mode, login information is passed as plain
text, and SSL must be used if you require encryption
during transmission.

-stacksize integer Specifies the size of the thread stack.

288 IBM Tivoli Netcool/OMNIbus: Administration Guide

Table 82. Process agent daemon nco_pad command-line options (continued)

Command-line option Description

UNIX

Linux

-ticketdir string

Directory for Kerberos tickets if -authenticate is set
to KERBEROS.

-traceevtq Enables tracing of event queue activity.

-tracemsgq Enables tracing of message queue activity.

-tracemtx Enables the tracing of mutex locks.

-tracenet Enables net library tracing.

-user string Specifies the user name that is used to log into
another process agent.

If the -user option is not specified, the user name
that is used to make the connection is the user
running the command.

This option must be specified if connecting to a
process agent that is running in secure mode (using
the -secure option).

This user name and its associated password (which
you specify using -password) are used if no login
credentials are specified in the routing section of the
process control configuration file.

-version Displays version information about the process agent
and exits.

Process agent security considerations
If the process agent is running as a privileged or super user on the host machine, it
is possible for a Netcool/OMNIbus Administrator to configure external actions
which are then executed on the host system as a privileged user. For example, as
the root user (UNIX) or as the Local System User (Windows). This presents a
potential security risk. Therefore, the process agent must be run as a
non-privileged user.

Note: There are instances when the process agent must be run as a privileged user.
For example, when running the SNMP Probe which needs to open port 162, and
when local file authentication is in use and the process agent must be able to read
the /etc/shadow file to authenticate users (UNIX only).
Related tasks:
“Running the process agent as a non-privileged user (UNIX)” on page 290
Use this procedure to set up a process agent to run as a non-privileged user on
UNIX operating systems.
“Running the process agent as a non-privileged user (Windows)” on page 290
Use this procedure to set up a process agent to run as a non-privileged user on
Windows.
“Running the process agent as a privileged user” on page 291
Use this procedure to set up a process agent to run as a privileged user.

Chapter 7. Using process control to manage processes and external procedures 289

Running the process agent as a non-privileged user (UNIX)
Use this procedure to set up a process agent to run as a non-privileged user on
UNIX operating systems.

Procedure

To set up a process agent to run as a non-privileged user on UNIX:
1. As a root user, locate the process agent start script. The start script is in the

/etc/ directory.
2. As the root user, locate the following entry in the start script. This entry is used

to start the process agent as a root user.
if ["$SECURE" = "Y"]; then
${OMNIHOME}/bin/nco_pad -name ${NCO_PA} -authenticate PAM -
secure > /dev/null 2> /dev/null
else
${OMNIHOME}/bin/nco_pad -name ${NCO_PA} -authenticate PAM >
/dev/null 2> /dev/null
fi

3. To start the process agent as a user called “netcool”, replace the entry that is
shown in step 2 with the following entry:
if ["$SECURE" = "Y"]; then
su - netcool -c "${OMNIHOME}/bin/nco_pad -name ${NCO_PA} -
authenticate PAM -secure > /dev/null 2> /dev/null"
else
su - netcool -c "${OMNIHOME}/bin/nco_pad -name ${NCO_PA} -
authenticate PAM > /dev/null 2> /dev/null"
fi

Results

The process agent runs as the local user netcool. The permissions for external
actions on the ObjectServer are limited to the privileges of that user on the host
computer.

Running the process agent as a non-privileged user (Windows)
Use this procedure to set up a process agent to run as a non-privileged user on
Windows.

Procedure

To set up a process agent to run as a non-privileged user on Windows:
1. As an Administrator, install the process agent as a Windows service. For more

information, see Example: Installing and running the process agent as a service.
2. From the Windows Control Panel, double-click Administrative Tools and then

Services.
3. In the Services Details window, select the new process agent service, and from

the toolbar, click Action(s) > Properties.
4. Click the Log On tab, and change the Log on as: radio button selection from

Local System account to This account:, and then select the local netcool user.
5. Click OK.

Note: You may need to restart the service if the service was previously
auto-started as a privileged user.

290 IBM Tivoli Netcool/OMNIbus: Administration Guide

The process agent will run as the local user netcool, and the ObjectServer
external action permissions are now limited to the netcool user privileges on
the host system.

Running the process agent as a privileged user
Use this procedure to set up a process agent to run as a privileged user.

About this task

There are instances when the process agent must be run as a privileged user. For
example, when running the SNMP Probe which needs to open port 162, or when
local file authentication is in use and the process agent must be able to read the
/etc/shadow file to authenticate users (UNIX only).

To set up a process agent to run as a privileged user:

Procedure
1. Install and run the primary process agent as a privileged user, and configure it

to run on the host machine using the start-up script (UNIX) or using a service
(Windows).

2. Run a secondary process agent as a non-privileged user, and configure it to
execute external ObjectServer actions. You must also configure it to run in
non-daemon mode, as a child process of the primary process agent. Therefore,
you must create an additional process entry in your primary process agent
configuration file, as shown in the following example:
nco_process ’NON_ROOT_PA’
{
Command ’$OMNIHOME/bin/nco_pad -name NON_ROOT_PA -nodaemon -configfile
$OMNIHOME/etc/NON_ROOT_PA.conf’ run as 1000
Host = ’hostx’
Managed = True
RestartMsg = ’${NAME} running as ${EUID} has been restored on ${HOST}.’
AlertMsg = ’${NAME} running as ${EUID} has died on ${HOST}.’
RetryCount = 0
ProcessType = PaPA_AWARE
}

Additional notes:

v In the previous example, the secondary process agent is set to start as user
1000 (UID). It is also set to start with the -nodaemon start-up switch. This
prevents it from forking to a child process, and allows it to be managed by
the primary process agent.

v You must define a configuration file for the secondary process agent. The
permissions for the configuration file must enable it to be accessed by the
user account that is running the secondary process agent.

v You must modify the properties file associated with the ObjectServer which
is currently running as a process under the primary process agent. This
includes setting the following properties: PA.Name, PA.Username, and
PA.Password.

Chapter 7. Using process control to manage processes and external procedures 291

Automatically starting process agents on UNIX
On UNIX, startup scripts are available to automatically start the process agent
when the system starts.

Before you begin

You can modify the startup scripts before you install them, if required.

On Linux operating systems, modify the startup script called nco for the version of
Linux that you are using. The script contains sections for either the Red Hat and
SUSE versions of Linux, and these sections are delimited with comments within
the script as follows:
REDHAT ONLY
...
END REDHAT ONLY

SUSE ONLY
...
END SUSE ONLY

Note that the script contains a number of separate sections for the Red Hat and
SUSE versions of Linux.

Also on Linux, modify the nco script if you are using Plugable Authentication
Modules (PAM) for authentication by adding the -authentication PAM argument to
the script. For the default UNIX authentication, you do not need to add anything.

About this task

These scripts are located in the following directory:

$NCHOME/omnibus/install/startup

This directory contains one of the following installation scripts, depending on the
operating system:
v aix5install

v hpux11hpiainstall

v solaris2install

v linux2x86install

v linux2s390install

To use the process agent startup scripts, you must run the appropriate installation
script for your operating system. (You might need to make the script executable
before running it.)

To install the process agent startup scripts:

Procedure
1. Run the installation script as the root user. For example, to install the scripts on

Solaris, run solaris2install from the $NCHOME/omnibus/install/startup
location. The following output is displayed:
Name of the Process Agent Daemon [NCO_PA]

292 IBM Tivoli Netcool/OMNIbus: Administration Guide

2. Press Enter to accept the default process agent server name NCO_PA or enter
another server name. The following output is displayed:
Should pa_name run in secure mode (y/n)? [y]

3. Press Enter to include the -secure command-line option when starting the
process agent. Secure mode controls the authentication of connection requests
with a user name and password.
The following message is displayed:
Enter value for environment variable NETCOOL_LICENSE_FILE,
if required [27000@localhost]:

Note: Although Tivoli Netcool/OMNIbus does not require a license key in
order to run, some probes and gateways that have not been through a recent
maintenance cycle still require license keys. If you are running these older
probe or gateway packages, they will still require the
NETCOOL_LICENSE_FILE environment variable to be set, and the availability
of a Netcool license server.

4. If you do not use a license server, you can safely press Enter to run the script.
If you have a license server, either press Enter to accept the default value for
the licensing environment variable, or enter another value.

Results

Each installation script copies or links the required configuration files into the
system startup directory. On some systems (for example, Solaris and HP-UX), the
ability to stop the processes at system shutdown is also provided.

What to do next

For information about modifying startup scripts, see your specific operating system
documentation.

Automatically starting process agents on Windows
On Windows, you can install the process agent as a Windows service.

About this task

Use the Services window in the Control Panel to assign either of the following
logon accounts to the service:
v Local system account (LocalSystem).
v An account that belongs to the Administrators group on the local computer.

For further information about installing and configuring a process agent as a
Windows service, see the IBM Tivoli Netcool/OMNIbus Installation and Deployment
Guide.

Chapter 7. Using process control to manage processes and external procedures 293

Managing your process control system configuration
After your process control system is set up and your process agents are running,
you can choose to make changes to the configuration by running the process
control utilities. Any configuration changes that you make apply to the current
session only, and are not saved to the configuration file.

About this task

You can also use Netcool/OMNIbus Administrator to change the configuration.
Configuration changes that you make from Netcool/OMNIbus Administrator can
be saved to the configuration file.
Related concepts:
“Using Netcool/OMNIbus Administrator to manage process control” on page 312
Netcool/OMNIbus Administrator provides a visual interface from which you can
manage process control. You can use Netcool/OMNIbus Administrator to view
and manage process agents, processes, and services on your Tivoli
Netcool/OMNIbus hosts.
Related tasks:
“Configuring and managing process control from the command line”
You can define processes, services, and hosts within the process control
configuration file. You can also use command-line utilities to start, stop, and add a
service or process, display the status of services and processes, and shut down a
process agent.

Configuring and managing process control from the command line
You can define processes, services, and hosts within the process control
configuration file. You can also use command-line utilities to start, stop, and add a
service or process, display the status of services and processes, and shut down a
process agent.

About this task

Before you can manage process control using either of these facilities, you must
have created your process control system configuration.
Related concepts:
“Using Netcool/OMNIbus Administrator to manage process control” on page 312
Netcool/OMNIbus Administrator provides a visual interface from which you can
manage process control. You can use Netcool/OMNIbus Administrator to view
and manage process agents, processes, and services on your Tivoli
Netcool/OMNIbus hosts.
Related tasks:
“Creating and starting a process control network system” on page 279
To manage process control, you must first determine your process control
configuration requirements and then perform a number of configuration tasks.

294 IBM Tivoli Netcool/OMNIbus: Administration Guide

Defining processes, services, and hosts for process control
To run under process control, processes, services, and hosts must be defined within
a process agent configuration file. When the process agent starts, it reads this file
to establish configuration settings.

About this task

The default process agent configuration file is:

$NCHOME/omnibus/etc/nco_pa.conf

The file is made up of definitions, each of which contains attributes and associated
values, for each process, service, and host. The definitions are listed in the
following order within the file:
1. Process definitions
2. Service definitions
3. Security definitions (optional)
4. Routing definitions

Edit this file directly to add or modify definitions. Maintain the configuration files
on all of your hosts to ensure that the host configuration information stays
synchronized across all of the process agents in the configuration.

Note: To prevent unauthorized users from gaining access, operating system
security must be set appropriately for files, such as configuration files, that might
contain user names and passwords.

Defining processes in the process agent configuration file
Within the process agent configuration file, you must define the list of processes
that should be run by the process agents.

Process definition example

An example process definition in the $NCHOME/omnibus/etc/nco_pa.conf
configuration file is as follows:
nco_process ’ObjectServer’
{
Command ’$NCHOME/omnibus/bin/nco_objserv -name NCOMS -pa SFOSYS1_PA’ run as 0
Host = ’sfosys1’
Managed = True
RestartMsg = ’${NAME} running as ${EUID} has been restored on ${HOST}.’
AlertMsg = ’${NAME} running as ${EUID} has died on ${HOST}.’
RetryCount = 0
ProcessType = PaPA_AWARE
}

Process definition description

The following table uses the preceding example to describe the process definition
information that is contained in the configuration file.

Chapter 7. Using process control to manage processes and external procedures 295

Table 83. Process definition description

Configuration
information Description

nco_process
’ObjectServer’

Defines the name of the process. This example is for an ObjectServer.
Note: Process names must be unique for this process agent. If you use the same process
name more than once, all, except for the first process definition, are ignored, and a warning
message is generated.

Command The command string that starts the process, as it would be entered on the command line.
Use the full path for the command. For example, to configure an ObjectServer named
NCOMS, enter:

'$NCHOME/omnibus/bin/nco_objserv -name NCOMS -pa SFOSYS1_PA' run as 0

Or enter:

'$NCHOME/omnibus/bin/nco_objserv -name NCOMS -pa SFOSYS1_PA' run as 'root'

In this example:

v The -pa option specifies the process agent that the ObjectServer uses to run external
automations. In this example, the process agent name is specified as SFOSYS1_PA.

v The run as option instructs the host computer to run the ObjectServer as the specified
user. On UNIX, you can either enter the user ID (typically 0), or enter the user name
enclosed in single quotation marks (typically root). When a user name is entered, the
process agent looks up the user ID to use. If the process agent is not running as root, the
run as option is ignored, and the process is run as the user who is running the process
agent.

On Windows, all processes are run under the same user account as the process agent;
always set the run as option to 0.
Tip: On Windows, you can use %NCHOME%, $NCHOME, or the expanded form of the
environment variable, in the path for the command. It is also acceptable to use slashes
(/), backslashes (\), or double backslashes (\\) as separators.

You can set the following additional process attributes by adding them to the beginning of
the command string:

v CWD: Set the current working directory to the value specified.

On Windows, you can specify the directory in any of these formats: MS-DOS format (for
example, C:\temp), UNIX format (for example, /temp/mydir), and UNC format (for
example, \\server\share\mydir). Both single and double backslashes can also be used as
separators.

When you run the process agent from the command line on UNIX and Windows, the
working directory for all child processes is the directory from which the process agent
was started. When you run the process agent as a UNIX daemon, the working directory
for all child processes is $NCHOME/omnibus. When you run the process agent as a Windows
service, the default working directory for the process agent and for any child processes
that are spawned by the process agent is %NCHOME%\omnibus\log.

v SETGID: Set the group ID of the process to the value specified. This is a UNIX-specific
attribute.

v UMASK: Set the umask of the process to the value specified. This is a UNIX-specific
attribute.

The format for specifying each of these attributes is as follows:

Command ’[CWD=directory_path]commandpath options’ run as user

Command ’[SETGID=groupID]commandpath options’ run as user

Command ’[UMASK=permission]commandpath options’ run as user

Note: You must specify the attributes as shown, in square brackets, without spaces.

296 IBM Tivoli Netcool/OMNIbus: Administration Guide

Table 83. Process definition description (continued)

Configuration
information Description

Command (continued from previous page)

Examples (UNIX):

Command ’[CWD=/opt/netcool/]$NCHOME/omnibus/bin/nco_objserv -name NCOMS2 -pa
NCO_PA’ run as 1253

Command ’[SETGID=ncoadmin]$NCHOME/omnibus/bin/nco_objserv -name NCOMS2 -pa NCO_PA’
run as 1253

Command ’[UMASK=u=rwx,g=rx,o=rx]$NCHOME/omnibus/bin/nco_objserv -name NCOMS2 -pa
NCO_PA’ run as 1253
Tip: In the preceding example with the UMASK setting, write permissions are assigned to
the current user, but removed for all other users. You can alternatively specify this as
[UMASK=022].

Command ’[UMASK=077]$NCHOME/omnibus/bin/nco_objserv -name NCOMS2 -pa NCO_PA’ run as
1253

You can specify one or more of the attributes within the command string. For example:

Command ’[CWD=/tmp][SETGID=ncoadmin][UMASK=u=rwx,g=,o=]$NCHOME/omnibus/bin/
nco_objserv -name NCOMS2 -pa NCO_PA’ run as 1253

Example (Windows):

Command ’[CWD=C:\temp]%NCHOME%\omnibus\bin\nco_objserv -name NCOMS2 -pa NCO_PA’ run
as 0

Host The name of the host on which the process should be run. Process control automatically
resolves the name of the process agent when required.

Managed Can have either of these values:

v True: The process is restarted automatically if it exits.

v False: The process is not restarted automatically if it exits.

RestartMsg Contains the message to be sent to the UNIX syslog or the Windows Event Viewer if the
process is restarted. For example, The ObjectServer has been restarted.

AlertMsg Contains the message to be sent to the UNIX syslog or the Windows Event Viewer if the
process exits. For example, The ObjectServer has gone down.

RetryCount Specifies the number of restart attempts to be made if the process exits in the time specified
by the nco_pad -retrytime command-line option. If set to 0, there is no limit to the number
of restart attempts. The default is 0.

ProcessType Can have the value PaPA_AWARE for PA aware processes and PaNOT_PA_AWARE for processes
that are not PA aware.

Expansion keywords

You can include expansion keywords in the RestartMsg and AlertMsg entries in the
configuration file. Expansion keywords act as variables and contain information
about the process that has restarted.

The expansion keywords are shown in the following table.

Chapter 7. Using process control to manage processes and external procedures 297

Table 84. Expansion keywords

Expansion keyword Description

${NAME} The name of the process.

${HOST} The name of the host running the process.

${EUID} The effective user ID under which the
process is running.

${COMMAND} The command that defines the process.

Alert and restart syslog or Event Viewer messages

When an alert or restart message is generated by the process agent daemon
nco_pad, it is passed to the UNIX syslog or the Windows Event Viewer. Tivoli
Netcool/OMNIbus has a Syslog probe that can monitor these messages and
convert them into ObjectServer alerts. For more information about the Syslog
probe, refer to the probe documentation that is available on the Tivoli Network
Management Information Center at http://publib.boulder.ibm.com/infocenter/
tivihelp/v8r1/index.jsp.

The alert and restart messages are sent to the UNIX syslog or the Windows Event
Viewer as warnings. The message is formatted as:
HOSTNAME : ALERT_OR_RESTART_MSG : MSG

The HOSTNAME is the name of the host that has reported the problem.
ALERT_OR_RESTORE_MSG describes the type of message. MSG is the text that is
defined in the configuration file for that process.
Related concepts:
“Host name resolution at startup” on page 276
Every external automation or process under the control of a process agent must
have a specified host. The host is defined either in the process agent configuration
file, as part of a process definition, or in the external automation in the
ObjectServer.

Defining services in the process agent configuration file
Within the process agent configuration file, you can define services to group
together related processes, and configure interdependencies of processes. The
processes must already be defined in the list of processes within the file.

Service definition example

An example service definition in the $NCHOME/omnibus/etc/nco_pa.conf
configuration file is as follows:
nco_service ’Omnibus’
{
ServiceType = Master
ServiceStart = Non-Auto
process ’ObjectServer’ NONE
process ’Proxy’ ’ObjectServer’
process ’Probe’ ’Proxy’
process ’Probe-1’ ’ObjectServer’
process ’Sleep’ 5
}

298 IBM Tivoli Netcool/OMNIbus: Administration Guide

http://publib.boulder.ibm.com/infocenter/tivihelp/v8r1/index.jsp
http://publib.boulder.ibm.com/infocenter/tivihelp/v8r1/index.jsp

Service definition description

The following table uses the preceding example to describe the service definition
information contained in the configuration file.

Table 85. Service definition description

Configuration information Description

nco_service ’Omnibus’ Defines the name of the service (for example,
Omnibus).
Note: Each service name must be unique within the
process control network.

ServiceType Defines whether this service should be started before
all other services and handled as the master service
upon which other services depend. This can be set as
either Master or Non-Master.

ServiceStart This can be set to Auto to start the service as soon as
nco_pad has started, and Non-Auto if the service must
be started manually with the nco_pa_start command.

process Each process entry defines a process that must be run
as part of the service. You can indicate process
dependencies so that a process cannot start before
another is already running.
Note: You must include a process only once within
any of the service definitions in the configuration file.

Specifying process dependencies

When defining a service, you can use the process attribute to define the processes
that should be run as part of the service. You can add dependencies on each of the
processes in the service. The format of the process attribute is as follows:
process ’processname’ dependency

In this attribute, processname is the name of the process defined in the list of
processes and dependency can be a numeric value, a string value, or NONE.

If dependency is a number, it indicates a time dependency, in seconds, for starting
the dependent process. A time dependency is always measured from the start of
the service. For example, if you enter 5, the process starts five seconds after the
service has started.

If dependency is a string, it indicates another PA aware process in the same service.

Restriction: A process cannot be dependent on another process that is
time-dependent. If you specify a dependency on a time-dependent process, an
error message is added to the process control log file, and the dependent process
and any child processes are assigned a status of DEAD. The default log file is
$NCHOME/omnibus/log/pa_name.log, where pa_name is the name of the process
agent.

The dependency type NONE specifies no dependency.

In the preceding service definition example for the Omnibus service, the
ObjectServer process starts first because it has no dependencies. Five seconds after
the ObjectServer starts, the Sleep process starts. When the ObjectServer is running
successfully, Proxy and Probe-1 start. When the proxy server is running, the Probe

Chapter 7. Using process control to manage processes and external procedures 299

process starts. If any of the processes was specified as dependent on the
time-dependent Sleep process, that process does not start, and is assigned a status
of DEAD.
Related reference:
“Defining processes in the process agent configuration file” on page 295
Within the process agent configuration file, you must define the list of processes
that should be run by the process agents.

Defining secure hosts in the process agent configuration file
You can specify that only certain hosts can connect to process agents by adding a
security definition to the process agent configuration file. If you do not create a
security definition, any process can connect from any host.

Within the $NCHOME/omnibus/etc/nco_pa.conf configuration file, the security
definition is inserted between the service definitions and the routing definitions for
hosts. You can create a security definition with no hosts specified, as follows:
nco_security
{
}

When no hosts are specified, only processes that are running on the current host or
on any host listed in the routing definition can connect.

Processes running on hosts that are not listed in the routing definition can connect
only if their host is listed in the security definition.

The process agent compares the IP address of the incoming connection with the IP
address of each entry in the security and routing definitions. The process agent
also checks the IP address of the local host. Only the main address of the host
running the process agent daemon is automatically added to the security
definition. You must add the loopback address (127.0.0.1) and secondary interfaces,
if required.

Note: When a process connecting to the process agent is run on a host with
multiple interfaces, you must add the address of the interface closest to the process
agent daemon. This does not need to be the main address of that host, nor, in the
case of the ObjectServer (nco_objserv) or the process agent daemon (nco_pad), does
it need to be the address in the Server Editor (nco_xigen).

You can specify the following types of entries in the security definition:
v A host name, in which case a lookup is performed to find the corresponding IP

address
v A full IPv4 address in dotted decimal notation
v An IPv6 address in full, shorthand, or mixed notation, with values separated by

colons

An IPv4 address in dotted decimal notation can contain the following wildcards:
v ? matches one character
v * matches any number of characters

You can append /n to a specified IPv6 address, where n is a number, to represent
IPv6 addresses for which the first n bits match the stated IP address.

300 IBM Tivoli Netcool/OMNIbus: Administration Guide

Security definition example

The following example security definition allows connections from processes on
the following hosts:
v alpha
v 192.9.200.34
v Any host on the subnet 193.42.52.0
v Any host with an IPv6 address where the first 10 bits match

fe80::203:baff:fe2a:6bf0
v fe80::203:baff:fe2a:6bf0
nco_security
{
host ’alpha’
host ’192.9.200.34’
host ’193.42.52.*’
host ’fe80::203:baff:fe2a:6bf0/10’
host ’fe80::203:baff:fe2a:6bf0’
}

Defining routing hosts in the process agent configuration file
To specify the hosts that are participating in the process control system, you must
define the process agent host names in the process agent configuration file.

Each host entry defines the name of the host (for example, sfosys1) and the name
of the process agent to be used in the process control system (for example,
SFOSYS1_PA). For each host definition, you can also specify user name and
password credentials for connecting to the process agent.

Routing definition example

An example routing definition in the $NCHOME/omnibus/etc/nco_pa.conf
configuration file is as follows:
nco_routing
{
host ’sfosys1’ ’SFOSYS1_PA’ ’username’ ’password’
host ’sfosys2’ ’SFOSYS2_PA’ ’username’ ’password’
}

Note: The username and password entries are mandatory if you are running the
remote process agent in secure mode. If you are not running the remote process
agent in secure mode, user names and passwords are optional.

If the process agent is using UNIX authentication (the default on UNIX), the
username must be an operating system user that is a member of the ncoadmin
group (default) or any other administrative group that is created for granting
access to the process control system. A process agent daemon that is running in
secure mode must be run by the root user.

On Windows, username must be the user name of a valid local account, domain
account, or UPN account.

Note: To prevent unauthorized users from gaining access, operating system
security must be set appropriately for files that contain user names and passwords.

When running the process agent daemon nco_pad, you can also specify the user
name and password by using the -user and -password command-line options. This

Chapter 7. Using process control to manage processes and external procedures 301

overrides any entries in the nco_pa.conf configuration file.

Encrypting plain text passwords in routing definitions

You can encrypt plain text login passwords that are stored in the nco_pa.conf file.

Password encryption details for running in FIPS 140–2 mode and non-FIPS 140–2
mode are described in the following table.

Table 86. Password encryption in FIPS 140–2 mode and non-FIPS 140–2 mode

Mode Action

FIPS 140–2 mode When in FIPS 140–2 mode, passwords can either be specified in plain
text or in encrypted format. You can encrypt passwords by using
property value encryption, as follows:

1. If you do not yet have a key for encrypting the password, create
one by running the nco_keygen utility, which is located in
$NCHOME/omnibus/bin.

2. Run the nco_aes_crypt utility to encrypt the password with the key
that was generated by the nco_keygen utility. The nco_aes_crypt
utility is also located in $NCHOME/omnibus/bin. Note that you must
specify AES_FIPS as the algorithm to use for encrypting the
password.

3. Copy the encrypted password into the appropriate routing
definition in the configuration file.

Non-FIPS 140–2
mode

In non-FIPS 140–2 mode, you can either use the nco_pa_crypt utility or
use property value encryption to encrypt plain text login passwords on
UNIX. On Windows, you can use the nco_g_crypt utility or use
property value encryption. Perform either of the following actions:

v To encrypt a password by using the nco_pa_crypt or nco_g_crypt
utility, run the command as follows:

– UNIX:

$NCHOME/omnibus/bin/nco_pa_crypt plaintext_password

– Windows:

%NCHOME%\omnibus\bin\nco_g_crypt plaintext_password

In these commands, plaintext_password represents the unencrypted
form of the password. The encryption utility displays an encrypted
version of the password. Copy the encrypted password into the
appropriate routing definition in the configuration file.

v To encrypt a password by using property value encryption, you
require a key that is generated with the nco_keygen utility. You can
then run nco_aes_crypt to encrypt the password with the key. Note
that you can specify either AES_FIPS or AES as the algorithm for
encrypting the password. Use AES only if you need to maintain
compatibility with passwords that were encrypted using the tools
provided in versions earlier than Tivoli Netcool/OMNIbus V7.2.1.

Copy the encrypted password into the appropriate routing definition
in the configuration file.

Note: On UNIX, even if the password is specified on the command line, it does
not appear in ps command output.

Passwords that are encrypted using nco_pa_crypt are decrypted by the remote
process control agent.

302 IBM Tivoli Netcool/OMNIbus: Administration Guide

Passwords that are encrypted using nco_aes_crypt are decrypted by the process
agent daemon, and are passed to remote process agents as plain text. To decrypt
the passwords, you must set the -cryptalgorithm and -keyfile command-line
options when running nco_pad. These options specify which algorithm and key file
to use for decryption.

For further information about using property value encryption, see the IBM Tivoli
Netcool/OMNIbus Installation and Deployment Guide.
Related tasks:
“Creating UNIX user groups for the process control system” on page 280
The process control daemon controls who can log in to it. On UNIX, any user who
needs access to the process control system must be a member of a UNIX user
group that you identify as an administrative group for this purpose.
Related reference:
“Process agent command-line options” on page 283
When running the process agent with the nco_pad command, you can specify a
number of command-line options for additional configuration.

Sample: Process agent configuration file
This sample shows the contents of a process agent configuration file
$NCHOME/omnibus/etc/nco_pa.conf.
##
#NCO_PA3#
Process Agent Daemon Configuration File 1.1
#
Ident: $Id: nco_pa.conf 1.3 2002/05/21 15:28:10
#
#
List of processes
#
nco_process ’NO1_PROXY_ProxyServer’
{
Command ’$NCHOME/omnibus/bin/nco_proxyserv -name NETPROXY -server NETOPS1’ run as 0
Host = ’objser1’
Managed = True
RestartMsg = ’${NAME} running as ${EUID} has been restored on ${HOST}.’
AlertMsg = ’${NAME} running as ${EUID} has died on ${HOST}.’
RetryCount = 0
ProcessType = PaPA_AWARE
}
nco_process ’SFOSYS_ObjectServer’
{
Command ’$NCHOME/omnibus/bin/nco_objserv -name NETOPS1 -pa OBJSER1_PA’ run as 0
Host = ’objser1’
Managed = True
RestartMsg = ’${NAME} running as ${EUID} has been restored on ${HOST}.’
AlertMsg = ’${NAME} running as ${EUID} has died on ${HOST}.’
RetryCount = 0
ProcessType = PaPA_AWARE
}
nco_process ’Syslog_Probe’
{
Command ’$NCHOME/omnibus/probes/nco_p_syslog’ run as 0
Host = ’objser1’
Managed = True
RestartMsg = ’${NAME} running as ${EUID} has been restored on ${HOST}.’
AlertMsg = ’${NAME} running as ${EUID} has died on ${HOST}.’
RetryCount = 0
ProcessType = PaNOT_PA_AWARE
}
nco_process ’Mttrapd_Probe’
{
Command ’$NCHOME/omnibus/probes/nco_p_mttrapd’ run as 0
Host = ’objser1’
Managed = True
RestartMsg = ’${NAME} running as ${EUID} has been restored on ${HOST}.’
AlertMsg = ’${NAME} running as ${EUID} has died on ${HOST}.’
RetryCount = 0
ProcessType = PaNOT_PA_AWARE

Chapter 7. Using process control to manage processes and external procedures 303

}
nco_process ’MyScript’
{
Command ’$HOME/myscript.sh’ run as 0
Host = ’objser1’
Managed = False
RestartMsg = ’${NAME} running as ${EUID} has been restored on ${HOST}.’
AlertMsg = ’${NAME} running as ${EUID} has died on ${HOST}.’
RetryCount = 0
ProcessType = PaNOT_PA_AWARE
}
#
List of Services
#
nco_service ’Core’
{
ServiceType = Master
ServiceStart = Auto
process ’MyScript’ NONE
ObjectServer started after 20 seconds to allow the script to finish
process ’SFOSYS_ObjectServer’ 20
Proxy server started after the ObjectServer starts
process ’NO1_PROXY_ProxyServer’ ’SFOSYS_ObjectServer’
Trapd probe and then Syslog probe started after the proxy server starts
process ’Mttrapd_Probe’ ’NO1_PROXY_ProxyServer’
process ’Syslog_Probe’ ’NO1_PROXY_ProxyServer’
}
#
ROUTING TABLE
#
’user’ - (optional) only required for secure mode PAD on target host
’user’ must be member of a UNIX administrative group if using UNIX authentication
On Windows, ’user’ must be the user name of a valid local, domain, or UPN account
’password’ - (optional) only required for secure mode PAD on target host
can be plain text, or encrypted using encryption tool provided for specific
platform and security requirements
nco_routing
{
host ’objser1’ ’OBJSER1_PA’
}

Managing process control using the process control utilities
The process control system provides command-line utilities for managing and
changing the Tivoli Netcool/OMNIbus configuration. You can use these utilities to
start, stop, and add a service or process, display the status of services and
processes, and shut down a process agent.

The command-line utilities are as follows:
v nco_pa_status

v nco_pa_start

v nco_pa_stop

v nco_pa_shutdown

v nco_pa_addentry

Each utility prompts for your password.

Displaying the status of services and processes (nco_pa_status)
You can run the nco_pa_status utility to retrieve the status of services in the
process control system configuration. For each service, the nco_pa_status utility
returns a list of defined processes, the status of each process, and the process
identifier.

To display the service status, enter the following command:

$NCHOME/omnibus/bin/nco_pa_status -server string

304 IBM Tivoli Netcool/OMNIbus: Administration Guide

In this command, string is the process agent name. You can optionally run the
command with additional command-line options.

Example output is as follows:

--
Service Name Process Name Hostname User Status PID
--
Master Service ObjectServer SFOSYS1 root RUNNING 16751

Proxy SFOSYS1 root RUNNING 16752
Sleep SFOSYS1 root RUNNING 16753
Probe SFOSYS1 root RUNNING 16754

--

The PID value for managed processes is the UNIX process identifier, or the PID as
shown in the Windows Task Manager.

The following table describes each of the status levels.

Table 87. Service status descriptions

Status level Description

RUNNING The process is running.

STARTING A start request has been issued.

PENDING The process is waiting for a time dependency to
complete. This status can also indicate that the
process has failed to start properly (regardless of any
process dependencies).

WAITING The process is waiting for a dependency to start.

DEAD The process is not running.

ERROR It was not possible to retrieve a status from the
process agent.

If a process agent is instructed to run a process by a process agent running on a
separate machine, the remote process agent does not retain a record of the process.
If the remote process agent stops, the process continues to run. When the remote
process agent restarts, it has no record of the process, and therefore the process
status for this orphan process is listed as DEAD.

You can manually restart the process by using the nco_pa_start utility.

Command-line options for nco_pa_status

Command-line options for the nco_pa_status utility are described in the following
table.

Table 88. Command-line options for nco_pa_status

Command-line option Description

-help Displays help on the command-line options and exits.

-nosecure Connects to process agents in a non-secure mode that
does not encrypt login information during
transmission.

-password string The password to use for the process agent.

-server string Name of process agent to contact.

Chapter 7. Using process control to manage processes and external procedures 305

Table 88. Command-line options for nco_pa_status (continued)

Command-line option Description

-user string The user name for the process agent. The default is
the user running the command.

-version Displays software version information and exits.

Related reference:
“Starting a service or process (nco_pa_start)”
You can run the nco_pa_start utility to start a service or process at any location in
the process control system configuration.

Starting a service or process (nco_pa_start)
You can run the nco_pa_start utility to start a service or process at any location in
the process control system configuration.

If the service or process has already been started, the command is ignored.

To start a service or process, enter the command:

$NCHOME/omnibus/bin/nco_pa_start command_line_options

In this command, command_line_options represents one or more command-line
options that you can specify for the nco_pa_start utility. You can specify only a
single service or process.

Command-line options for nco_pa_start

Command-line options for the nco_pa_start utility are described in the following
table.

Table 89. Command-line options for nco_pa_start

Command-line option Description

-help Displays help about the command-line options and
exits.

-nosecure Connects to process agents in a non-secure mode that
does not encrypt login information during
transmission.

-password string The password to use for the process agent.

-process string Name of the process to start.

-server string Name of process agent to contact.

-service string Name of the service to start.

-user string The user name for the process agent. The default is
the user running the command.

-version Displays software version information and exits.

306 IBM Tivoli Netcool/OMNIbus: Administration Guide

Stopping a service or process (nco_pa_stop)
You can run the nco_pa_stop utility to stop a service or process at any location in
the process control system configuration.

If the service or process has already been stopped, the command is ignored.

When you stop a service, all the processes that are defined within that service are
also stopped. When you stop a process, the status of dependent processes remains
unaltered; for example, if an ObjectServer is stopped, the probes that were
dependent on it continue to run.

To stop a service or process, enter the following command:

$NCHOME/omnibus/bin/nco_pa_stop command_line_options

In this command, command_line_options represents one or more command-line
options that you can specify for the nco_pa_stop utility. You can specify only a
single service or process.

Command-line options for nco_pa_stop

Command-line options for the nco_pa_stop utility are described in the following
table.

Table 90. Command-line options for nco_pa_stop

Command-line option Description

-force If specified, no warning is output if the process or
service is not running.

-help Displays help about the command-line options and
exits.

-nosecure Connects to process agents in a non-secure mode that
does not encrypt login information during
transmission.

-password string The password to use for the process agent.

-process string Name of the process to stop.

-server string Name of process agent to contact.

-service string Name of the service to stop.

-user string The user name for the process agent. The default is
the user running the command.

-version Displays software version information and exits.

Shutting down a process agent (nco_pa_shutdown)
You can run the nco_pa_shutdown utility to shut down a process agent and
optionally stop associated services and processes.

To shut down a process agent, enter the following command:

$NCHOME/omnibus/bin/nco_pa_shutdown command_line_options

In this command, command_line_options represents one or more command-line
options that you can specify for the nco_pa_shutdown utility.

Chapter 7. Using process control to manage processes and external procedures 307

Command-line options for nco_pa_shutdown

Command-line options for the nco_pa_shutdown utility are described in the
following table.

Table 91. Command-line options for nco_pa_shutdown

Command-line option Description

-help Displays help about the command-line options and
exits.

-nosecure Connects to process agents in a non-secure mode that
does not encrypt login information during
transmission.

-option string Specifies how the shutdown is completed. Can be
STOP to shut down all processes that the process
agent manages locally, or LEAVE to leave the
locally-managed processes running after the
shutdown. If -option is not specified on the
command line, the utility displays a menu with the
shutdown options and prompts you for the type of
shutdown to perform.
Tip: To stop a remotely-managed process, you must
run the nco_pa_stop utility.

-password string The password to use for the process agent.

-server string Name of process agent to shut down.

-user string The user name for the process agent. The default is
the user running the command.

-version Displays software version information and exits.

Tip: If you are running a process agent as a Windows service, and you stop the
service, managed processes are also stopped. This means that all managed
processes are stopped in a controlled way when the system is shut down.
Related reference:
“Stopping a service or process (nco_pa_stop)” on page 307
You can run the nco_pa_stop utility to stop a service or process at any location in
the process control system configuration.

Adding new services or processes (nco_pa_addentry)
You can run the nco_pa_addentry utility to add new services or processes while the
process agent is running.

Use this utility to:
v Add new services to a running process agent.
v Start a fire-and-forget process. Such processes start automatically and cannot be

altered. When setting up a fire-and-forget process, define the process as
unmanaged if you want to ensure that it runs only once. You can do this by
specifying the -unmanaged command-line option when running the
nco_pa_addentry utility.

v Add a new managed process to a service.

Note: The new service or process is not added to the process agent configuration
file unless you choose to update the configuration file when using
Netcool/OMNIbus Administrator.

308 IBM Tivoli Netcool/OMNIbus: Administration Guide

To add a service or process to a running process agent, enter the following
command. The square brackets depict optional entries.

$NCHOME/omnibus/bin/nco_pa_addentry [-process string | -service string]
command_line_options

In this command, command_line_options represents one or more command-line
options that you can specify for the service or process, or for the nco_pa_addentry
utility.

Command-line options for nco_pa_addentry

Command-line options for the nco_pa_addentry utility are described in the
following table.

Important: To ensure that the process or service is properly created, all relevant
command-line options must be explicitly specified with an assigned string value.
This criterion also applies to any default settings that you might want to apply.

Table 92. Command-line options for nco_pa_addentry

Command-line option Description

-alert_msg string Specifies the message to send to the UNIX syslog or
the Windows Event Viewer if the process exits.

On UNIX, enclose the string value in single quotation
marks if the text contains spaces. On Windows,
enclose the string value in double quotation marks if
the text contains spaces.

-auto

-nonauto

If -auto is specified, the service or process is started
as soon as the process agent is started. By default, the
service must be started manually with the
nco_pa_start command.

-command string Specifies the process command line. For example:

$NCHOME/omnibus/bin/nco_objserv -name NCOMS
-pa SFOSYS1_PA

-delay string Specifies the time delay in seconds before the
specified process is started.

-depend string Specifies a process on which the specified process
depends.

-help Displays help on the command-line options and exits.

-host string Specifies the host on which to run the process.

-managed

-unmanaged

If -managed is specified, the process is restarted
automatically if it exits. The default is -managed.

-master

-nonmaster

If -master is specified, the service type is set to
master. The default is -master.

-nosecure Connects to process agents in a non-secure mode that
does not encrypt login information during
transmission.

-pa_aware

-not_pa_aware

If -pa_aware is specified, the ProcessType is set to
PaPA_AWARE. By default, the process is not PA aware.

Chapter 7. Using process control to manage processes and external procedures 309

Table 92. Command-line options for nco_pa_addentry (continued)

Command-line option Description

-parentservice string Specifies the service to which to add the process.
Note: When adding a process to a service, you must
define the parent service by using -parentservice.

-password string Specifies the password to use when connecting to the
process agent.

-process string Specifies the name of the process to add.

-restart_msg string Specifies the message to send to the UNIX syslog or
the Windows Event Viewer if the process is restarted.

On UNIX, enclose the string value in single quotation
marks if the text contains spaces. On Windows,
enclose the string value in double quotation marks if
the text contains spaces.

-retrycount integer Specifies the number of restart attempts to be made if
the process exits in the time specified by the nco_pad
-retrytime command-line option. If set to 0, there is
no limit to the number of restart attempts. The
default is 0.

-runas integer Specifies the user ID to run the process as.

-server string Specifies the name of the process agent. The default
is NCO_PA.

-service string Specifies the name of the service to add.

-user string Specifies the user name to use when connecting to
the process agent. The default is the user that is
running the command.

-version Displays software version information and exits.

Example: Use nco_pa_addentry to add a fire-and-forget process (UNIX)
on 32-bit operating systems
1. Enter the following command to add a fire-and-forget process named simnet1,

which starts automatically and runs only once (as an unmanaged process):
./nco_pa_addentry -server TEST_PA -process 'simnet1' -command
'$NCHOME/omnibus/probes/nco_p_simnet' -host 'owl' -retrycount 0
-unmanaged -restart_msg 'test' -alert_msg 'testalert'

2. Run the nco_pa_status utility to retrieve the status of services in the
configuration:
$NCHOME/omnibus/bin/nco_pa_status -server TEST_PA

Where TEST_PA is the process agent name.

When the nco_pa_status utility is run, the output does not show a simnet1 process
definition as part of a service entry. However, the ps -ef command shows the
simnet1 process as running, although it does not automatically restart if it exits.

Example: Use nco_pa_addentry to add a fire-and-forget process
(Windows)
1. Enter the following command to add a fire-and-forget process named simnet1,

which starts automatically and runs only once (as an unmanaged process):

310 IBM Tivoli Netcool/OMNIbus: Administration Guide

"%NCHOME%"\omnibus\bin\nco_pa_addentry -server TEST_PA -process simnet1
-command "%NCHOME%"\omnibus\probes\win32\nco_p_simnet -host owl
-retrycount 0 -unmanaged -restart_msg "Probe restarted" -alert_msg
"Probe stopped" -password secret

2. Run the nco_pa_status utility to retrieve the status of services in the
configuration:
"%NCHOME%"\omnibus\bin\nco_pa_status -server TEST_PA

Where TEST_PA is the process agent name.

When the nco_pa_status utility is run, the output does not show a simnet1 process
definition as part of a service entry. However, the Windows Task Manager shows
the simnet1 process as running, although it does not automatically restart if it exits.

Example: Use nco_pa_addentry to add a managed process to a service
(Solaris) on 64-bit operating systems
1. Enter the following command to add a process named simnet2 to a Core

service:
./nco_pa_addentry -server TEST_PA -process 'simnet2' -command
'$NCHOME/omnibus/platform/solaris2/probes64/nco_p_simnet' -host 'owl'
-retrycount 0 -managed -restart_msg 'test' -alert_msg 'testalert'
-parentservice 'Core'

2. Run the nco_pa_status utility to retrieve the status of services in the
configuration:
$NCHOME/omnibus/bin/nco_pa_status -server TEST_PA

Where TEST_PA is the process agent name.

When nco_pa_status is run, the output displays a simnet2 process with a status of
DEAD, as part of the Core service definition. The simnet2 process does not start
automatically because it is part of a service. To run the process, use the
nco_pa_start utility.

Example: Use nco_pa_addentry to add a managed process to a service
(Windows)
1. Enter the following command to add a process named simnet2 to a Core

service:
"%NCHOME%"\omnibus\bin\nco_pa_addentry -server TEST_PA -process simnet2
-command "%NCHOME%"\omnibus\probes\win32\nco_p_simnet -host owl
-retrycount 0 -managed -restart_msg "test" -alert_msg "testalert"
-parentservice "Core"

2. Run the nco_pa_status utility to retrieve the status of services in the
configuration:
"%NCHOME%"\omnibus\bin\nco_pa_status -server TEST_PA

Where TEST_PA is the process agent name.

When nco_pa_status is run, the output displays a simnet2 process with a status of
DEAD, as part of the Core service definition. The simnet2 process does not start
automatically because it is part of a service. To run the process, use the
nco_pa_start utility.

Chapter 7. Using process control to manage processes and external procedures 311

Related concepts:
“Host name resolution at startup” on page 276
Every external automation or process under the control of a process agent must
have a specified host. The host is defined either in the process agent configuration
file, as part of a process definition, or in the external automation in the
ObjectServer.
Related reference:
“Starting a service or process (nco_pa_start)” on page 306
You can run the nco_pa_start utility to start a service or process at any location in
the process control system configuration.

Using Netcool/OMNIbus Administrator to manage process control
Netcool/OMNIbus Administrator provides a visual interface from which you can
manage process control. You can use Netcool/OMNIbus Administrator to view
and manage process agents, processes, and services on your Tivoli
Netcool/OMNIbus hosts.

For example, you can view the status of services that are under process control on
a host computer, and then start or stop the processes in those services.

You must connect to a process agent in order to manage its services and processes.
Configuration changes that you make to services and processes can be saved to the
process control configuration file, which is overwritten each time that you save.

Note: You cannot use Netcool/OMNIbus Administrator to specify that only certain
hosts can connect to process agents. To define such secure hosts, you must add a
security definition to the process agent configuration file manually.
Related tasks:
“Configuring and managing process control from the command line” on page 294
You can define processes, services, and hosts within the process control
configuration file. You can also use command-line utilities to start, stop, and add a
service or process, display the status of services and processes, and shut down a
process agent.
“Starting Netcool/OMNIbus Administrator” on page 64
You must run the nco_config utility to start Netcool/OMNIbus Administrator.

Connecting to a process agent
Before you can connect to a process agent by using Netcool/OMNIbus
Administrator, you must ensure that the process agent has started.

About this task

You can start the process agent automatically by using the supplied startup scripts
on UNIX, or by running the process agent as a Windows service. You can also start
the process agent manually by running the $NCHOME/omnibus/bin/nco_pad
command.

To connect to a process agent:

Procedure
1. From the Netcool/OMNIbus Administrator window, select the Reports menu

button.

312 IBM Tivoli Netcool/OMNIbus: Administration Guide

2. Click the PA icon. The Process Agent Report window opens. This window
displays all the process agents that were selected when the Import Connections
Wizard was last run.

Tip: After you have started Netcool/OMNIbus Administrator, you can select
File > Import at any time to import new server communication information
that is specified in the Server Editor. This information facilitates communication
between Tivoli Netcool/OMNIbus server components such as ObjectServers,
gateways, process agents, and proxy servers.

3. Select the process agent to which you want to connect and then perform either
of the following actions:
v If you are connecting for the first time or want to enter updated

authentication information to be used when connecting, click Connect As in
the toolbar. The Process Agent Security window opens. Go to step 4.

v If you want to connect by using previously-specified authentication
information, click Connect. The Process Agent Security window opens with
the previously-specified authentication details. Go to step 5.

4. Complete the Process Agent Security window as follows:

Username
Type the user name that is used to log into the process agent.

On UNIX, any user that needs access to the process agent must be a
member of a UNIX user group that you identify as an administration
group for this purpose. On Windows, the user must be a valid user
with a local or domain account.

Password
Type the password that is used to log into the process agent.

Always use for this connection
Select this check box to indicate that the specified user name and
password should be saved for automatic reuse on subsequent
connection attempts to this process agent. These settings last for the
length of the application session.

Use as default
Select this check box if you want the values specified for the user name
and password to be automatically filled in the next time this window is
displayed. These settings last for the length of the application session.

Note: If you select both check boxes, the Always use for this
connection setting takes precedence.

5. Verify or cancel the authentication as follows:

OK Click this button to verify the credentials for connection, and close the
window. The Service/Process Details pane opens. This pane contains
information about the processes and services that are configured for the
selected process agent.

Cancel
Click this button to close the Process Agent Security window without
attempting to connect to the process agent. You return to the Process
Agent Report window.

Chapter 7. Using process control to manage processes and external procedures 313

What to do next

When you first connect to existing process agents with Netcool/OMNIbus
Administrator, the remote processes are only visible if they have been defined
manually in the configuration of the local process agent. To make remote processes
visible to all linked process agents, select each service or process in turn, click the
Edit button, and close the resulting window without making any changes. Save
each configuration file after that process is complete.
Related tasks:
“Automatically starting process agents on UNIX” on page 292
On UNIX, startup scripts are available to automatically start the process agent
when the system starts.
“Automatically starting process agents on Windows” on page 293
On Windows, you can install the process agent as a Windows service.
“Manually starting process agents” on page 282
You can manually start process agents from the command line.
“Starting Netcool/OMNIbus Administrator” on page 64
You must run the nco_config utility to start Netcool/OMNIbus Administrator.

Displaying and configuring status information for a process
agent

You can view version details for a process agent to which you are connected, and
change the logging level for messages that the process agent generates. You can
also configure host routing by adding process agents to a routing group.

Before you begin

Before attempting to add a process agent to a routing group, you must have used
the File > Import option (and the Import Connections Wizard) to import the
details of the process agent into Netcool/OMNIbus Administrator.

About this task

To display and configure status information for a process agent:

Procedure
1. If not already connected, connect to the process agent by using

Netcool/OMNIbus Administrator. On successful connection, the
Service/Process Details pane opens by default.

2. Click the Info icon that is displayed to the left of this pane. The PA Status
Information pane opens.

3. Complete this pane as follows:

Version
This area displays the version of the process agent.

Note: The version cannot be determined if the process agent is a
version that is earlier than V7.0.1.

Debug Level
To change the debug level for the log file, select another value from this
drop-down list. Click the tick button to the right of the drop-down list
to apply the selected debug level to the current session.

314 IBM Tivoli Netcool/OMNIbus: Administration Guide

To save the updated debug level, click Save the Process Agent
configuration in the toolbar.

Defined Hosts (UNIX)/Related Process Agents (Windows)
This area displays a list of process agents that are known to this
process agent. The information is read from the process agent
configuration file, which may differ from the hosts that are imported
from the interfaces file by the Import Connections Wizard.

You can use the buttons to the right to add from a list of known hosts,
or to remove hosts.

To save your host definition changes, click Save the Process Agent
configuration in the toolbar. If you do not save in this way, your
changes are lost on exit.

Related tasks:
“Starting Netcool/OMNIbus Administrator” on page 64
You must run the nco_config utility to start Netcool/OMNIbus Administrator.
“Connecting to a process agent” on page 312
Before you can connect to a process agent by using Netcool/OMNIbus
Administrator, you must ensure that the process agent has started.

Displaying the processes and services for a process agent
You can use the Service/Process Details pane in Netcool/OMNIbus Administrator
to view details of the processes and services that are configured for a process
agent, and to manage these processes and services.

About this task

To view the processes and services that are configured for a process agent, perform
either of the following actions:

Procedure
v If not already connected, connect to the process agent by using

Netcool/OMNIbus Administrator. On successful connection, the Service/Process
Details pane opens by default.

v If you are already connected to the process agent, but the Service/Process
Details pane is not currently on display, click the Status icon in the
Configuration window for the process agent, to view this pane.

Results

In the Service/Process Details pane, the following details are shown for each
configured service and process:
v The unique name that is assigned to the service or process
v The status of the service or process
v The host on which the process is running; this column is blank for services
v The process identifier of a running process; this column is blank for services and

processes that are not currently running

Within the Name column, the icon shown to the left of a name identifies the

entry as a service, and the icon identifies the entry as a process. Processes are
also grouped by the service under which they run, and process names are shown
in the following format:

Chapter 7. Using process control to manage processes and external procedures 315

service_name:process_name

For example: Core:MasterObjectServer

Within the Status column, the status icon is depicted as a circle, and its color
indicates whether the service or process is running:
v Green: The service or process is running.
v Blue: The service is marginal. Not all processes are running.
v Yellow: The process is pending. The process is waiting for a time dependency to

complete. This status can also indicate that the process has failed to start
properly, regardless of any process dependencies.

v Gray: The process is dead (not running) or the service has stopped.
v Red: This identifies an error status level, which is an indication that a status

level cannot be retrieved from the process agent.

From the Service/Process Details pane, you can manage processes and services for
the selected process agent in the following ways:
v Create or edit a service
v Create or edit a process
v Delete a selected service or process
v Start a selected service or process
v Stop a selected service or process
v Copy and paste a service or process within the same process agent, or across

process agent hosts
v Stop the process agent
v Run an external action
v Send a signal to a process
v Save the process agent configuration file to disk
v Refresh the contents of the pane (by clicking Refresh in the toolbar)
Related tasks:
“Starting Netcool/OMNIbus Administrator” on page 64
You must run the nco_config utility to start Netcool/OMNIbus Administrator.
“Connecting to a process agent” on page 312
Before you can connect to a process agent by using Netcool/OMNIbus
Administrator, you must ensure that the process agent has started.

Configuring services for a process agent
You can use Netcool/OMNIbus Administrator to create, edit, delete, start, and stop
services that are defined to run under a process agent. When you make
configuration changes to a service, you can elect to save your changes to the
process control configuration file.

316 IBM Tivoli Netcool/OMNIbus: Administration Guide

Creating and editing services
You can set up a Tivoli Netcool/OMNIbus service and configure it to start either
automatically or manually.

About this task

To create or edit a service:

Procedure
1. Perform any of the following actions from Netcool/OMNIbus Administrator:

v If you are connected to the process agent and the Service/Process Details
pane is open, go to the next step.

v If not already connected, connect to the process agent. On successful
connection, the Service/Process Details pane opens.

v If you are connected to the process agent, but the Service/Process Details
pane is not currently on display, click the Status icon in the Configuration
window for the process agent, to view this pane.

2. To add a service, click New Service in the toolbar. To edit a service, select the
service to edit and then click Edit in the toolbar.
The Service Details window opens.

3. Complete this window as follows:

Name Enter the service name. This name must be unique within the process
control network. When editing a service, you cannot change the name.

Auto Start Service
Select this check box to specify that the service should start
automatically as soon as the process agent has started. Clear this check
box if you want to start the service manually by using the
nco_pa_start command.

Master Service
Select this check box to indicate that this is a master service. A master
service is started before other services and is handled as the master
service upon which other services depend.

If you define multiple services as master within the same process
control configuration file, the master services start in the order in which
they appear in the configuration file.

Processes and their order within the configuration file
This list is shown only when editing a service, and shows the processes
that are defined to run as part of the service. The order in which the
processes are displayed indicates their order in the configuration file.
You can use the arrow buttons to change the process order.

4. Save or cancel your changes as follows:

OK Click this button to save the service details and close the window. New
services are added to the Service/Process Details pane.

Tip: Your configuration changes are not automatically saved to the
process control configuration file. To update the file, click Write Process
Agent Config file in the toolbar.

Cancel
Click this button to close the window without saving your changes.

Chapter 7. Using process control to manage processes and external procedures 317

Related tasks:
“Starting Netcool/OMNIbus Administrator” on page 64
You must run the nco_config utility to start Netcool/OMNIbus Administrator.
“Connecting to a process agent” on page 312
Before you can connect to a process agent by using Netcool/OMNIbus
Administrator, you must ensure that the process agent has started.

Deleting a service
When you delete a service, you remove it from the process control configuration.

About this task

To delete a service:

Procedure
1. Perform any of the following actions from Netcool/OMNIbus Administrator:

v If you are connected to the process agent and the Service/Process Details
pane is open, go to the next step.

v If not already connected, connect to the process agent. On successful
connection, the Service/Process Details pane opens.

v If you are connected to the process agent, but the Service/Process Details
pane is not currently on display, click the Status icon in the Configuration
window for the process agent, to view this pane.

2. Select the service that you want to delete, click Delete in the toolbar, and
confirm the deletion. The service is deleted and the Service/Process Details
pane is updated.

Results

Tip: Your configuration changes are not automatically saved to the process control
configuration file. To update the file, click Write Process Agent Config File in the
toolbar.
Related tasks:
“Starting Netcool/OMNIbus Administrator” on page 64
You must run the nco_config utility to start Netcool/OMNIbus Administrator.
“Connecting to a process agent” on page 312
Before you can connect to a process agent by using Netcool/OMNIbus
Administrator, you must ensure that the process agent has started.

Starting a service
You can only start services that have a Stopped status.

About this task

To start a service:

Procedure
1. Perform any of the following actions from Netcool/OMNIbus Administrator:

v If you are connected to the process agent and the Service/Process Details
pane is open, go to the next step.

v If not already connected, connect to the process agent. On successful
connection, the Service/Process Details pane opens.

318 IBM Tivoli Netcool/OMNIbus: Administration Guide

v If you are connected to the process agent, but the Service/Process Details
pane is not currently on display, click the Status icon in the Configuration
window for the process agent, to view this pane.

2. Select the service that you want to start and then click Start in the toolbar.

Results

The service and its associated processes are started and the Service/Process Details
pane is updated.
Related tasks:
“Starting Netcool/OMNIbus Administrator” on page 64
You must run the nco_config utility to start Netcool/OMNIbus Administrator.
“Connecting to a process agent” on page 312
Before you can connect to a process agent by using Netcool/OMNIbus
Administrator, you must ensure that the process agent has started.

Stopping a service
You can only stop services that have a Marginal or Running status.

About this task

To stop a service:

Procedure
1. Perform any of the following actions from Netcool/OMNIbus Administrator:

v If you are connected to the process agent and the Service/Process Details
pane is open, go to the next step.

v If not already connected, connect to the process agent. On successful
connection, the Service/Process Details pane opens.

v If you are connected to the process agent, but the Service/Process Details
pane is not currently on display, click the Status icon in the Configuration
window for the process agent, to view this pane.

2. Select the service that you want to stop and then click Stop in the toolbar.

Results

The service and its defined processes are stopped and the Service/Process Details
pane is updated.
Related tasks:
“Starting Netcool/OMNIbus Administrator” on page 64
You must run the nco_config utility to start Netcool/OMNIbus Administrator.
“Connecting to a process agent” on page 312
Before you can connect to a process agent by using Netcool/OMNIbus
Administrator, you must ensure that the process agent has started.

Chapter 7. Using process control to manage processes and external procedures 319

Configuring processes
Using Netcool/OMNIbus Administrator, you can create, edit, delete, start, and stop
processes within a service that is configured to run under a process agent. You can
also send signals to processes.

When you make configuration changes to a process, you can elect to save your
changes to the process control configuration file.

Creating and editing processes
You can set up a process and configure it to run as part of a service.

Before you begin

At least one service must already exist before you can configure processes.

About this task

To create or edit a process:

Procedure
1. Perform any of the following actions from Netcool/OMNIbus Administrator:

v If you are connected to the process agent and the Service/Process Details
pane is open, go to the next step.

v If not already connected, connect to the process agent. On successful
connection, the Service/Process Details pane opens.

v If you are connected to the process agent, but the Service/Process Details
pane is not currently on display, click the Status icon in the Configuration
window for the process agent, to view this pane.

2. To add a process, click New Process in the toolbar. To edit a process, select the
process to edit and then click Edit in the toolbar.
The Process Details window opens.

3. Define a new process as follows:

Name Type the process name. This name must be unique per process agent.
When editing a process, you cannot change the name.

Command
Type the command string that starts the process, as it would be entered
on the command line. Use the full path for the command. For example,
to configure an ObjectServer named NCOMS, with process agent
SFOSYS1_PA, type:

$NCHOME/omnibus/bin/nco_objserv -name NCOMS -pa SFOSYS1_PA

Host Type the name of the host on which the process is run. Process control
automatically resolves the name of the process agent, when required.

Service
Select the service under which this process will run. When editing a
process, you cannot change the service.

4. From the Process tab, specify additional details about the process. Complete the
tab as follows:

Managed
Select this check box if you want to the process to restart automatically
if it fails.

320 IBM Tivoli Netcool/OMNIbus: Administration Guide

Run As ID
Type the user ID under which the process is run. This value is typically
0, which corresponds to the root user name.

Note: If the process agent is not running as root, this option is ignored,
and the process is run as the user who is running the process agent.

Retry Count
Specify the number of restart attempts to be made if the process exits
within the time specified by the process agent -retrytime
command-line option. If set to 0, there is no limit to the number of
restart attempts. The default is 0.

Process Type
From this drop-down list, select PA Aware to make the process aware of
process control and enable the use of all process control features, such
as dependencies. Select Not PA Aware if the process can be managed by
process control, but cannot use all process control features.

Dependency
Use this drop-down list to indicate whether the process has any
dependencies. The option that you select here determines the remaining
fields that are displayed:
v Select None to specify that the process has no dependency on any

other process. No more fields are displayed.
v Select Delay to indicate a time dependency for starting the process.

An additional field titled Start delay is displayed for you to define
the time dependency.

v Select Process to indicate a dependency on another process. An
additional field titled Select Delay from or Dependent Name is
displayed for you to specify a process.

Start delay
Specify a time (in seconds) for starting the process. This time is
measured from the start of the service.

Select Delay from/Dependent Name
Use this drop-down list to select another PA aware process on which
the process being created or edited depends. The process being created
or edited will not start until the process on which it depends is already
running.

5. From the Messages tab, specify message details that should be sent to the
UNIX syslog or the Windows Event Viewer when the process is restarted or
exits. Complete the tab as follows:

Restart
Type the message to be sent to the UNIX syslog or the Windows Event
Viewer if the process is restarted. For example: The ObjectServer has
been restarted.

Alert Type the message to be sent to the UNIX syslog or the Windows Event
Viewer if the process exits. For example: The ObjectServer has gone
down.

When the process agent generates an alert or restart message, this
message is passed to the syslog or Event Viewer. Tivoli
Netcool/OMNIbus has a Syslog probe that can monitor these messages
and convert them into ObjectServer alerts.

Chapter 7. Using process control to manage processes and external procedures 321

The alert and restore messages are sent to the UNIX syslog or the
Windows Event Viewer as warnings. The message is formatted as:
HOSTNAME : ALERT_OR_RESTART_MSG : MSG

The HOSTNAME is the name of the host that has reported the problem.
ALERT_OR_RESTORE_MSG describes the type of message. MSG is the
text defined in the configuration file for that process.

You can use the expansion keywords described in the following table in the
restart and alert entries that you specify in the Messages tab. Expansion
keywords act as variables and contain information about the process that has
exited or restarted.

Table 93. Expansion keywords

Expansion keyword Description

${NAME} The name of the process.

${HOST} The name of the host running the process.

${EUID} The effective user ID under which the process is
running.

${COMMAND} The command that defines the process.

6. Save or cancel your changes as follows:

OK Click this button to save the process details and close the window. New
processes are added to the Service/Process Details pane.

Tip: Your configuration changes are not automatically saved to the
process control configuration file. To update the file, click Write Process
Agent Config File in the toolbar.

Cancel
Click this button to close the window without saving your changes.

Related tasks:
“Starting Netcool/OMNIbus Administrator” on page 64
You must run the nco_config utility to start Netcool/OMNIbus Administrator.
“Connecting to a process agent” on page 312
Before you can connect to a process agent by using Netcool/OMNIbus
Administrator, you must ensure that the process agent has started.
Related reference:
“Defining processes in the process agent configuration file” on page 295
Within the process agent configuration file, you must define the list of processes
that should be run by the process agents.

Deleting a process
When you delete a process, you remove it from the service to which it was
assigned.

About this task

To delete a process:

Procedure
1. Perform any of the following actions from Netcool/OMNIbus Administrator:

v If you are connected to the process agent and the Service/Process Details
pane is open, go to the next step.

322 IBM Tivoli Netcool/OMNIbus: Administration Guide

v If not already connected, connect to the process agent. On successful
connection, the Service/Process Details pane opens.

v If you are connected to the process agent, but the Service/Process Details
pane is not currently on display, click the Status icon in the Configuration
window for the process agent, to view this pane.

2. Select the process that you want to delete, click Delete in the toolbar, and then
confirm the deletion. The process is removed from the service definition and
the Service/Process Details pane is updated.

Results

Tip: Your configuration changes are not automatically saved to the process control
configuration file. To update the file, click Write Process Agent Config File in the
toolbar.
Related tasks:
“Starting Netcool/OMNIbus Administrator” on page 64
You must run the nco_config utility to start Netcool/OMNIbus Administrator.
“Connecting to a process agent” on page 312
Before you can connect to a process agent by using Netcool/OMNIbus
Administrator, you must ensure that the process agent has started.

Starting a process
You can only start processes that have a Dead status.

About this task

To start a process:

Procedure
1. Perform any of the following actions from Netcool/OMNIbus Administrator:

v If you are connected to the process agent and the Service/Process Details
pane is open, go to the next step.

v If not already connected, connect to the process agent. On successful
connection, the Service/Process Details pane opens.

v If you are connected to the process agent, but the Service/Process Details
pane is not currently on display, click the Status icon in the Configuration
window for the process agent, to view this pane.

2. Select the process that you want to start and then click Start in the toolbar.

Results

The process is started and the Service/Process Details pane is updated with the
status of the process, including the process ID of the running process.
Related tasks:
“Starting Netcool/OMNIbus Administrator” on page 64
You must run the nco_config utility to start Netcool/OMNIbus Administrator.
“Connecting to a process agent” on page 312
Before you can connect to a process agent by using Netcool/OMNIbus
Administrator, you must ensure that the process agent has started.

Chapter 7. Using process control to manage processes and external procedures 323

Stopping a process
You can only stop processes that have a Pending or Running status.

About this task

When you stop a process, the status of dependent processes remains unaltered; for
example, if an ObjectServer is stopped, the probes that were dependent on it
continue to run.

To stop a process:

Procedure
1. Perform any of the following actions from Netcool/OMNIbus Administrator:

v If you are connected to the process agent and the Service/Process Details
pane is open, go to the next step.

v If not already connected, connect to the process agent. On successful
connection, the Service/Process Details pane opens.

v If you are connected to the process agent, but the Service/Process Details
pane is not currently on display, click the Status icon in the Configuration
window for the process agent, to view this pane.

2. Select the process that you want to stop and then click Stop in the toolbar.

Results

The process is stopped and the Service/Process Details pane is updated.
Related tasks:
“Starting Netcool/OMNIbus Administrator” on page 64
You must run the nco_config utility to start Netcool/OMNIbus Administrator.
“Connecting to a process agent” on page 312
Before you can connect to a process agent by using Netcool/OMNIbus
Administrator, you must ensure that the process agent has started.

Sending signals to processes
You can use Netcool/OMNIbus Administrator to send a UNIX signal to a process.

About this task

For example, you might want a probe to re-read its rules file. To do this, send a
SIGHUP(1) signal to the probe process.

To send a signal to a process:

Procedure
1. Perform any of the following actions from Netcool/OMNIbus Administrator:

v If you are connected to the process agent and the Service/Process Details
pane is open, go to the next step.

v If not already connected, connect to the process agent. On successful
connection, the Service/Process Details pane opens.

v If you are connected to the process agent, but the Service/Process Details
pane is not currently on display, click the Status icon in the Configuration
window for the process agent, to view this pane.

324 IBM Tivoli Netcool/OMNIbus: Administration Guide

2. Select the process to which you want to send a signal and then click Send
Signal in the toolbar. The Send Signal window opens.

3. Complete this window as follows:

Process Name
Select the process to which the signal should be sent.

Signal Select the signal that you want to send. Valid signals include:
v SIGHUP(1): Hangup signal to stop and restart a process
v SIGINT(2): Interrupt signal
v SIGTERM(15): Terminate signal

On Windows, the SIGINT(2) and SIGTERM(15) signals are supported
only on Tivoli Netcool/OMNIbus processes; for example, ObjectServers,
proxy servers, and probes. You can alternatively use the other available
methods for stopping processes. When a probe is running under
process control, the SIGHUP(1) signal can be used to make the probe
re-read its rules file.

4. Confirm or cancel your changes as follows:

OK Click this button to close the window and send the signal to the
selected process.

Apply Click this button to send the signal to the selected process and keep the
window open.

Cancel
Click this button to close the window without sending a signal.

Related tasks:
“Starting Netcool/OMNIbus Administrator” on page 64
You must run the nco_config utility to start Netcool/OMNIbus Administrator.
“Connecting to a process agent” on page 312
Before you can connect to a process agent by using Netcool/OMNIbus
Administrator, you must ensure that the process agent has started.

Copying and pasting a service or process between process
agent hosts

You can copy and paste a selected service and its related processes, or a selected
process, either within a process agent, or from one process agent to another.

About this task

To copy and paste a service or process:

Procedure
1. Perform any of the following actions from Netcool/OMNIbus Administrator:

v If you are connected to the process agent and the Service/Process Details
pane is open, go to the next step.

v If not already connected, connect to the process agent. On successful
connection, the Service/Process Details pane opens.

v If you are connected to the process agent, but the Service/Process Details
pane is not currently on display, click the Status icon in the Configuration
window for the process agent, to view this pane.

2. From the Service/Process Details pane of the process agent from which you
want to copy a service or process, select the relevant service or process, and

Chapter 7. Using process control to manage processes and external procedures 325

then click Copy in the toolbar. The selected service and its related processes are
copied to the clipboard, or the selected process is copied to the clipboard.

3. To paste the contents of the clipboard within the same process agent, click
Paste in the toolbar of the current Service/Process Details pane.
To paste the contents of the clipboard to another connected process agent,
access the Service/Process Details pane for that process agent, and then click
Paste in the toolbar.

4. If you copied a process, the Process Details pane opens. Process names must be
unique per process agent, so rename the process if necessary, and make any
other required changes. Click OK to close this window and paste the process
details to the Service/Process Details pane. Alternatively, click Cancel to cancel
the paste operation.

5. If you copied a service, the Process Agent Consistency Checker wizard opens.
Service names must be unique within the process control network, and process
names must be unique per process agent, so renaming is required. Perform the
following actions:
a. Click Next to proceed to the next page, and amend the service or process

details as required. You can specify a new name for the service by
overwriting its name. To amend the details of each process, double-click the
process entry to obtain the Process Details window, and then make the
relevant changes. You can additionally specify whether to include or
exclude a process in the paste action. On UNIX, click within the Include in
Paste cell to toggle between the true and false options. On Windows,
right-click over the process entry and then select or deselect the Include in
Paste option in the pop-up menu.

b. Click Next to view a summary of the service and processes to be pasted.
c. Click Finish to close the wizard and paste the details to the Service/Process

Details pane. You can also click Cancel to cancel the paste operation.
Related tasks:
“Starting Netcool/OMNIbus Administrator” on page 64
You must run the nco_config utility to start Netcool/OMNIbus Administrator.
“Connecting to a process agent” on page 312
Before you can connect to a process agent by using Netcool/OMNIbus
Administrator, you must ensure that the process agent has started.

Running an external action
You can use Netcool/OMNIbus Administrator to run a command on a host.

About this task

To run an external action:

Procedure
1. Perform any of the following actions from Netcool/OMNIbus Administrator:

v If you are connected to the process agent and the Service/Process Details
pane is open, go to the next step.

v If not already connected, connect to the process agent. On successful
connection, the Service/Process Details pane opens.

v If you are connected to the process agent, but the Service/Process Details
pane is not currently on display, click the Status icon in the Configuration
window for the process agent, to view this pane.

326 IBM Tivoli Netcool/OMNIbus: Administration Guide

2. To specify the command details, click Run External Action in the toolbar. The
External Action Details window opens.

3. Complete this window as follows:

Command
Type a valid command that you want to run on the host.

Host Select the host on which to run the command.
4. Confirm or cancel your changes as follows:

OK Click this button to close the window and run the command.

Cancel
Click this button to close the window without running the command.

Related tasks:
“Starting Netcool/OMNIbus Administrator” on page 64
You must run the nco_config utility to start Netcool/OMNIbus Administrator.
“Connecting to a process agent” on page 312
Before you can connect to a process agent by using Netcool/OMNIbus
Administrator, you must ensure that the process agent has started.

Stopping a process agent
You can stop a process agent and all its managed processes, or stop a process
agent and leave its processes running.

About this task

To stop a process agent:

Procedure
1. Perform any of the following actions from Netcool/OMNIbus Administrator:

v If you are connected to the process agent and the Service/Process Details
pane is open, go to the next step.

v If you are connected to the process agent, but the Service/Process Details
pane is not currently on display, click the Status icon in the Configuration
window for the process agent, to view this pane.

2. Click Stop the Process Agent in the toolbar.
3. When prompted, choose an option to indicate whether you want to stop the

process agent and all its managed processes, or stop the process agent and
leave its processes running. Click OK.

Results

The process agent, and optionally, its processes, are stopped.

Using process control to run external procedures in automations
The process control system runs external procedures that are specified in
automations. External procedures are run on a local or remote host.

An automation does not run programs by itself. It sends a request to a process
agent. If necessary, the process agent forwards the request to the process agent that
is running on the specified host. The remote process agent then runs the requested
program.

Chapter 7. Using process control to manage processes and external procedures 327

External procedures can pass between different operating system environments,
and process agents in one operating system can run automations sent by process
agents in another operating system.

When you run the process agent from the command line on UNIX and Windows,
the working directory for all child processes is the directory from which the
process agent was started.

When you run the process agent as a UNIX daemon, the working directory for all
child processes is $NCHOME/omnibus.

On Windows, the default directory for a process agent that is running as a
Windows service is %NCHOME%\omnibus\log. This directory is also the default
working directory of any child processes that are spawned by the process agent.

Tip: When running external procedures, the PA.Username and PA.Password
ObjectServer properties must be set to a valid user name and password
combination within the ObjectServer properties file, for authentication purposes.
The PA.Name ObjectServer property must also be set to the name of the process
agent that the ObjectServer uses to run external automations. These settings ensure
that connection to the process agent, and the running of the external procedure, are
successful.
Related concepts:
“Host name resolution at startup” on page 276
Every external automation or process under the control of a process agent must
have a specified host. The host is defined either in the process agent configuration
file, as part of a process definition, or in the external automation in the
ObjectServer.
Related reference:
“ObjectServer properties and command-line options” on page 3
Use the ObjectServer properties or command-line options to configure settings for
the ObjectServer. To avoid errors, add as many properties as possible to the
properties file rather than using the command-line options. Additional utilities are
provided that you can use to encrypt the property values.

328 IBM Tivoli Netcool/OMNIbus: Administration Guide

Chapter 8. Performance tuning

Tivoli Netcool/OMNIbus performance can be measured in terms of response time,
throughput, and availability.

These performance metrics are affected by several factors, which include:
v The number of events, including details and journals, in the ObjectServer

This number has a direct bearing on the volume of data that is transferred
during resynchronization operations, and on the number of rows that need to be
scanned during SQL queries from clients and triggers.

v The event throughput into the system from probes or inbound gateways
v The event throughput out of the system from outbound gateways
v The number of concurrent Web GUI and desktop display clients, and the

number of other connected clients that compete for the ObjectServer's time
v The number and complexity of Web GUI and desktop filters, and the number of

connections and complexity of actions in the policies that are submitted by
Netcool/Impact clients, where applicable

v The efficiency of the custom ObjectServer automations, and whether they are
subjecting the ObjectServer to unnecessary workload

v The granularity settings of the ObjectServer (that is, how often it sends IDUC
broadcasts to clients)

v Your hardware and system configuration

To help obtain an optimal level of performance for the ObjectServer, you can
monitor the number and throughput of connecting clients, evaluate the efficiency
of the ObjectServer automations, and design efficient indexes to support your SQL
queries. Also consider the use of a multitiered architecture to support high
availability of your Tivoli Netcool/OMNIbus installation.

Tivoli Netcool/OMNIbus key performance indicators
To ensure that a Tivoli Netcool/OMNIbus system is running effectively, you can
monitor several key performance indicators (KPIs).

Each KPI description defines the KPI, explains how to set it up, explains
usefulness, and gives an indicator of what to monitor, that is, what KPI values
indicate good performance, and what values might need to be investigated. For
many KPIs, the values given are not absolute; instead you can use these values
indicatively. For your own Tivoli Netcool/OMNIbus system, you must establish
baseline values on a system that is known to be working effectively, for example
on a test environment, and compare the values with the current and future values
on the production system.

The KPIs provided do not constitute an exhaustive list. Depending on your Tivoli
Netcool/OMNIbus environment, certain KPIs will require special monitoring,
while others might not be important.

© Copyright IBM Corp. 1994, 2013 329

ObjectServer key performance indicators
Monitor these key performance indicators (KPIs) to establish the effectiveness of
the ObjectServer.

The following ObjectServer KPIs can be monitored:

Total time used in granularity
To set up this KPI, you must run the ObjectServer with profiling enabled
and run the trigger_stats_report automation. The profiling data shows how
much time the ObjectServer has spent profiling queries from clients,
including the time spent in automations raised by the client activity. The
trigger_stats.log file contains the amount of time each trigger has used
in the last profiling period. To demonstrate that the ObjectServer can
process all the requests in the available time, the processing time needs to
be less than the time of the reporting period. Note that the trend of this
KPI over time is more important than its value at a given moment.

Tip: On multiprocessor servers, the time spent processing requests from
clients and automations can be greater that the reporting period, because of
the multi-threaded nature of the ObjectServer.

CPU usage of the nco_objserv process
To monitor the CPU usage of the nco_objserv process, set up and use an
IBM Tivoli Monitoring agent.

The CPU usage of processes is one of the most important metrics for
determining performance; for an ObjectServer under heavy load, the
performance is most likely bound to the CPU usage.

Tip: When troubleshooting performance, the profile log file and trigger
statistics log file are the first place to investigate. Generally, if the total
combined time for both clients and triggers is consistently over 60 seconds
(the default granularity period), some action needs to be taken. Various
operating system metrics can also be useful in identifying whether a
system is under stress. The key metrics are the CPU utilization and the
process size of the Tivoli Netcool/OMNIbus processes.

Number of rows in the alerts.status table
The performance of unindexed queries is proportional to the number of
rows in the alerts.status table. As the number of rows in the alerts.status
table increases, so the time needed to perform all queries and execute all
triggers against the alerts.status table increases. Additionally, holding row
data accounts for most of the memory used by the ObjectServer; the data
of the alerts.status table accounts for most of this row data. The number of
rows in the alerts.status table fluctuates depending on the networks and
applications that are being monitored. However, the number of rows
should be stable over a period of weeks. If the number of rows in the
alerts.status table is increasing over the weeks then, depending on the rate
of the increase, a problem might be developing. The alerts.status table uses
more memory than the alert.details table and the alerts.journal table. For
more information about the event count in the alerts.status table, see
“Other useful information” on page 332.

Number of rows in the alerts.details table
The performance of the queries performed by the Web GUI clients to
retrieve alert details is proportional to the number of entries in the
alerts.details table. The more entries are contained in the alerts.details
table, the slower the queries become. Additionally, holding row data

330 IBM Tivoli Netcool/OMNIbus: Administration Guide

accounts for most of the memory used by the ObjectServer; the data of the
alerts.details table accounts for some of this row data. Each entry in the
alerts.details table increases the load on any gateways that are configured
to forward this data to other ObjectServers or other applications. The
number of rows in the alerts.details table fluctuates depending on the
networks and applications that are being monitored, the day of the week,
time of day, and so on. However, the number of rows should be stable
over a period of weeks. If the number of rows in the alerts.details table is
increasing over time, or as new devices or probe rules files are introduced,
then, depending on the rate of the increase, a problem might be
developing. The alerts.details table uses more memory than the
alerts.journal table, but less memory than the alerts.status table.

Tip: Use the nvp_add function to move data from alerts.details table entries
to the ExtendedAttr field of the alerts.status table. The use of the nvp_add
function means that the number of inserts performed by a probe is
reduced.
For more information about the event count in the alerts.details table, see
“Other useful information” on page 332.

Number of rows in the alerts.journal table
The number of rows in the alerts.journal table fluctuates depending on the
automation that is processing the events, or the user who is processing the
events. However, the number of rows should be stable over a period of
weeks. If the number of rows in the alerts.journal table is increasing over
the weeks then, depending on the rate of the increase, a problem might be
developing. Ensure that an entry is made in the alerts.journal table only
when a trigger affects the content of a row, regardless of a the frequency of
a trigger. Use indicators to make sure that an event is not unnecessarily
reprocessed by the same trigger.For more information about the event
count in the alerts.journal table, see “Other useful information” on page
332.

Number of inserts in the alerts.status table in the previous n seconds
For this KPI, inserts refers to new rows and deduplications. To monitor the
number of inserts in the alerts.status table, enable the stats_triggers trigger
group and the statistics_gather automation. The data gathered by this
trigger group and automation is written periodically to the master.stats
table, in the StatusInserts column. The performance metric can be derived
by comparing the value of the StatusInserts column with the value from
the previous report. This KPI enables you to identify large increases in
input to the system caused by the monitoring of new devices or
applications, and can be used to increase the scalability of your system,
and plan capacity. The number of rows in the alerts.status table fluctuates
depending on the networks and applications that are being monitored, the
day of the week, time of day, and so on. However, the number of rows
should be stable over a period of weeks. If the number of rows in the
alerts.status table is increasing over the weeks, or as new devices or probe
rules files are introduced, then, depending on the rate of the increase, a
problem might be developing, for example, a fault or problem with the
probe rules file.

Memory usage of the nco_objserv process
To monitor the memory usage of the nco_objserv process, set up and use
the IBM Tivoli Monitoring Agent for Tivoli Netcool/OMNIbus. Monitor the
memory usage of the nco_objserv process to ensure that the usage does not
approach any memory limits, and to help you identify any increases in

Chapter 8. Performance tuning 331

memory usage, and determine the cause of the increases. The memory
usage of the process increases proportionally to increases in the number of
rows in the alerts.status table, alerts.details table, and the alerts.journal
table (or any additional tables you have defined) to increases in the
number of connections, and increased usage by clients. The memory usage
should remain stable over time, and any increases should correspond to
increases in the numbers of table rows, or additional clients.

For more information about the IBM Tivoli Monitoring Agent for Tivoli
Netcool/OMNIbus, see the IBM Tivoli Monitoring for Tivoli
Netcool/OMNIbus Agent User's Guide.

Number of connections into the ObjectServer
To monitor the number of connections into the ObjectServer, enable the
stats_triggers trigger group and the statistics_gather automation. The data
gathered by this trigger group and automation is written periodically to
the master.stats table, in the NumClients column. Alternatively, you can
run a manual count of the number of rows in the catalog.connections table.
A maximum of 1024 connections can be made to the ObjectServer. When
the maximum number of connections is reached, new connections are
refused. A refused connection might result in the temporary loss of access
to data or loss of input to probes or gateways. The maximum number of
connections is 1024. The maximum permitted number of connections is
determined by the ObjectServer Connections property, with a default of
256. The number of connections varies according to your environment and
its usage. However, the number should remain stable when compared over
a number of weeks. If the number of connections is increasing over the
weeks then, depending on the rate of the increase, a problem might be
developing.

Usage of memstore
To monitor the memstore, inspect the content of the catalog.memstores
table. For each row, compare the value of the UsedBytes column with the
values of the SoftLimit column and the HardLimit column. Memstores are
containers that are maintained by the ObjectServer, they contain
ObjectServer data and tables in the memory. Memstores have a finite size,
and, when full, do not permit any further data to be inserted.
Consequently, you must ensure that the memstores do not become full. The
usage of the memstores varies according to your environment and its
usage. However, the usage should remain stable when compared over a
number of weeks. If the usage of the memstores is increasing over the
weeks then, depending on the rate of the increase, a problem might be
developing.

Other useful information

To monitor the number of rows in the alerts.status table, alerts.details table, and
alerts.journal table, enable the stats_triggers group and the statistics_gather
automation. To enable triggers, use the nco_config command to start
Netcool/OMNIbus Administrator, or use the ALTER TRIGGER GROUP command.
The data gathered by this trigger group and automation is written periodically to
the master.stats table. The default interval is 300 seconds; this value is configurable.
The following table describes the column to which the count of the number of
rows is written:

332 IBM Tivoli Netcool/OMNIbus: Administration Guide

Table 94. Columns to which event count is written for ObjectServer tables

Table Column to which the count is written

alerts.status EventCount

alerts.details DetailCount

alerts.journal JournalCount

Several of the KPIs described in the preceding list can also be monitored by using
IBM Tivoli Monitoring agents. Working knowledge of IBM Tivoli Monitoring is
required. For information about setting up IBM Tivoli Monitoring agents, see the
IBM Tivoli Monitoring information center at http://publib.boulder.ibm.com/
infocenter/tivihelp/v15r1/index.jsp.
Related reference:
“master.stats table” on page 384
The master.stats table stores timing information about the alerts.status,
alerts.details, and alerts.journal tables. This timing information is gathered if the
stats_triggers trigger group is enabled. The stats_triggers trigger group is disabled
by default in the automation.sql file.
Related information:

IBM Tivoli Monitoring for Tivoli Netcool/OMNIbus Agent

Probe key performance indicators
Probes can be configured to generate ProbeWatch heartbeat events as a
self-monitoring mechanism to help monitor performance, diagnose performance
problems, and highlight performance bottlenecks before they affect the system.

Tip: For more information about setting up IBM Tivoli Monitoring agents, see the
IBM Tivoli Monitoring information center at http://publib.boulder.ibm.com/
infocenter/tivihelp/v15r1/index.jsp

The following KPIs can be established to monitor the health of probes:

Number of events received by a probe in previous nseconds
The number of events received by the probe in the previous n seconds can
be derived from the NumEventsProcessed column of the master.probestats
table as a delta from the previous reported value for each probe. Probe
throughput generates work for the ObjectServer, a flood of events from a
specific probe should be investigated. It might highlight a problem with
the probe, the probe rules file, or the devices or applications that are being
monitored by that probe. Compare the current value against the previous
values for this KPI to identify abnormal behaviour.

Probe CPU usage
The CPU usage of the probe is contained in the CPUTimeSec column of the
master.probestats table. An IBM Tivoli Monitoring agent installed on the
probe computer can also measure the CPU usage of the probe. CPU
resources are finite. If the probe process is at maximum CPU, events are
queued in the probe until the probe can process them. Consequently, probe
input might build up, which can cause delays in processing, or, depending
on the probe, can cause loss of data. Contributory factors are be the
incoming event load and the rules file processing.

Probe memory footprint
The memory footprint of the probe is contained in the ProbeMemory

Chapter 8. Performance tuning 333

http://publib.boulder.ibm.com/infocenter/tivihelp/v15r1/index.jsp
http://publib.boulder.ibm.com/infocenter/tivihelp/v15r1/index.jsp
http://publib.boulder.ibm.com/infocenter/tivihelp/v8r1/topic/com.ibm.netcool_OMNIbus.doc_7.4.0/omn_itmagent.htm
http://publib.boulder.ibm.com/infocenter/tivihelp/v15r1/index.jsp
http://publib.boulder.ibm.com/infocenter/tivihelp/v15r1/index.jsp

column of the master.probestats table. An IBM Tivoli Monitoring agent
installed on the probe computer can also measure the memory usage of the
probe. Memory is a finite resource and probe memory should not grow
unbounded. Memory usage of a probe process should be relatively stable,
although some increase is expected as caches and buffers build. The
memory footprint of a probe will increase when the first SIGHUP signal is
sent to the probe to instruct the probe to reread its rules file. This increase
is expected as the new rules file is read and parsed before the memory
used by the existing rules file is released. This is necessary so that the
probe always has a valid rules file. Subsequent SIGHUP signals to reread
the rules file should cause only a comparatively small increase in the
memory usage. Use of associative arrays might also contribute to increased
memory usage of the probe, because the arrays are built up by the events
that are processed by the rules file. The memory footprint of the
nco_p_mttrapd probe is distinctive because it maintains a large buffer for
incoming traps. This can often account for over 50MB of memory growth
as the first 2000 traps are received. After the memory for the trap queue
buffer has been allocated the memory usage should settle down. Other
unexplained unbounded memory growth needs to be investigated.

Average time spent processing rules
The average time spent processing the rules file is contained in the
AvgRulesFileTime column of the master.probestats table.

Inefficiencies in the rules file may cause delays in event processing. The
time spent processing the rules file is one of the major factors in limiting
maximum throughput of a probe. If rules file processing is taking, on
average, 5,000 microseconds (millionths of a second) then the probe will
only be able to process 200 events per second maximum.

Gateway key performance indicators
Use these key performance indicators (KPIs) to monitor the performance of
gateways.

Tip: For more information about setting up IBM Tivoli Monitoring agents, see the
IBM Tivoli Monitoring information center at http://publib.boulder.ibm.com/
infocenter/tivihelp/v15r1/index.jsp

The following KPIs can be used to monitor gateway performance:

CPU usage of gateway processes
An IBM Tivoli Monitoring agent installed on the gateway computer can
measure the CPU usage of the gateway process or processes. CPU
resources are finite. If the gateway process is at maximum CPU, the
gateway might not be able to process all events, and events might be
delayed reaching the target system.

Memory usage of gateway processes
An IBM Tivoli Monitoring agent installed on the gateway computer can
measure the memory usage of the gateway process or processes. Memory
resources are finite. Unbounded memory growth might cause the abnormal
termination of the process or processes. Memory usage of a gateway
process should be relatively stable although some increase is expected as
caches build, and while the gateway is temporarily storing alert data as the
data is passed between the ObjectServer and its destination. Unbounded
memory growth needs to be investigated. Memory growth in the
ObjectServer Gateway might be due to a problem in the ObjectServer.

334 IBM Tivoli Netcool/OMNIbus: Administration Guide

http://publib.boulder.ibm.com/infocenter/tivihelp/v15r1/index.jsp
http://publib.boulder.ibm.com/infocenter/tivihelp/v15r1/index.jsp

For more information about the IBM Tivoli Monitoring Agent for Tivoli
Netcool/OMNIbus, see the IBM Tivoli Monitoring for Tivoli Netcool/OMNIbus
Agent User's Guide.
Related information:

IBM Tivoli Monitoring for Tivoli Netcool/OMNIbus Agent

Best practices for performance tuning
Use these best practice guidelines to help configure your Tivoli Netcool/OMNIbus
system for optimal performance. Work through each of the steps in turn to help
you identify and resolve changes that adversely affect performance, and to fine
tune performance.

For more information about performance tuning for the Web GUI, see the IBM
Tivoli Netcool/OMNIbus Web GUI Administration and User's Guide.

Run the ObjectServer with profiling enabled
Use profiling to measure the amount of time spent running SQL queries on the
ObjectServer and to identify which client connections are using up excessive
resources.

To enable profiling on the ObjectServer:
1. Ensure that the Profile property is set to TRUE. (This is the default value.)
2. Use the ProfileStatsInterval property to specify an interval at which profiling

information is written to the profile log file. A default interval of 60 seconds is
used if you do not change this value.

3. Ensure that the profiler_triggers trigger group and its triggers
(profiler_group_report, profiler_report, profiler_toggle) are enabled for profile
logging.

Timing information for running SQL commands from client connections is logged
to the catalog.profiles table. You can use Netcool/OMNIbus Administrator to view
details that are recorded in the catalog.profiles table. From the Netcool/OMNIbus
Administrator window, select the System menu button and then click Databases.
You can use the Data View tab on the Databases, Tables and Columns pane to
view table data, and use the Column Definitions tab to view detailed information
about the columns in the table.

Profile statistics are also logged to a profile log file $NCHOME/omnibus/log/
servername_profiler_report.logn, where servername represents the ObjectServer
name and n is a number. The profile log file shows a breakdown of the time spent
for each client connection and the total time spent by client type, for each
granularity period (as set by the Granularity property). Each client shown in the
log file is identified by a standard default name (for example, GATEWAY or
PROBE) and the host on which the client is running. You can use the profile log
file to analyze how the ObjectServer spent its time during each granularity period
and calculate the percentage of time used. For example, if the granularity period is
set to 60 seconds and the total time spent for all the connections during a
particular period was 30 seconds, you can calculate that the ObjectServer spent
50% of its available time on running SQL commands from client connections.

The work completed in a report period is output in a summary line for each
granularity period. The information presented in the summary line is displayed in
the following format: Total time in the report period (profiling period): total time

Chapter 8. Performance tuning 335

http://publib.boulder.ibm.com/infocenter/tivihelp/v8r1/topic/com.ibm.netcool_OMNIbus.doc_7.31/omn_itmagent.htm

by all clients. The total time by all clients can be greater than the profiling period
due to the multi-threaded nature of ObjectServer. This is especially true for
multi-CPU systems. If the profiling period is greater than the configured profiling
period it means that ObjectServer is too busy to report the profiling time and
might indicate the ObjectServer is overloaded. If the total time by all clients is
greater than the profiling period, it indicates the system is under load, but does
not necessarily indicate a problem.

Sample output recorded in a profile log file for a granularity period is as follows:
[1] Mon Oct 12 17:39:46 2009: Individual user profiles:
[2] Mon Oct 12 17:39:46 2009: ’Administrator’ (uid = 0) time on adminhost: 0.000000s
[3] Mon Oct 12 17:39:46 2009: ’isql’ (uid = 0) time on omnihost1.ibm.com: 3.770000s
[4] Mon Oct 12 17:39:46 2009: ’PROBE’ (uid = 0) time on probehost.ibm.com: 5.010000s
[5] Mon Oct 12 17:39:46 2009: ’e@c0B4D@c0142:11.0’ (uid = 0) time on omnihost1.ibm.com: 10.010000s
[6] Mon Oct 12 17:39:46 2009: ’c@xxxxx@xxxxx:11.0’ (uid = 45) time on omnihost1.ibm.com: 0.000000s
[7] Mon Oct 12 17:39:46 2009: ’e@c0B4D@c0142:11.0’ (uid = 45) time on omnihost1.ibm.com: 9.870000s
[8] Mon Oct 12 17:39:46 2009: ’c@xxxxx@xxxxx:11.0’ (uid = 55) time on omnihost1.ibm.com: 0.000000s
[9] Mon Oct 12 17:39:46 2009: ’e@c0B4D@c0142:11.0’ (uid = 55) time on omnihost1.ibm.com: 6.020000s
[10] Mon Oct 12 17:39:46 2009: ’GATEWAY’ (uid = 0) time on omnihost1.ibm.com: 0.270000s
[11] Mon Oct 12 17:39:46 2009: ’GATEWAY’ (uid = 0) time on omnihost1.ibm.com: 0.000000s
[12] Mon Oct 12 17:39:46 2009: ’PROBE’ (uid = 0) time on omnihost1.ibm.com: 3.010000s
[13] Mon Oct 12 17:39:46 2009: Grouped user profiles:
[14] Mon Oct 12 17:39:46 2009: Execution time for all connections whose application name is ’PROBE’: 8.020000s
[15] Mon Oct 12 17:39:46 2009: Execution time for all connections whose application name is ’GATEWAY’: 0.270000s
[16] Mon Oct 12 17:39:46 2009: Execution time for all connections whose application name is ’c@xxxxx@xxxxx:11.0’: 0.000000s
[17] Mon Oct 12 17:39:46 2009: Execution time for all connections whose application name is ’e@c0B4D@c0142:11.0’: 25.93000s
[18] Mon Oct 12 17:39:46 2009: Execution time for all connections whose application name is ’isql’: 3.77000s
[19] Mon Oct 12 17:39:46 2009: Execution time for all connections whose application name is ’Administrator’: 0.000000s
[20] Mon Oct 12 17:39:46 2009: Total time in the report period (59.275782s): 29.980000s

The line numbers are included in the preceding output to help describe the entries:
v Line [1]: Introduces a list of individual clients that are connected to the

ObjectServer.
v Line [2]: Shows the application name for the connected client (Administrator),

the associated user for that client (user ID 0), the host computer (adminhost), and
the amount of time the client has used in the last profiling period (0.000000s).

v Line [13]: Introduces a list that shows the aggregated time for all clients of the
same type.

v Line [14]: Shows that the two connected probes used a combined time of 8.02
seconds.

v Line [17]: Shows that the event lists used 25 seconds. Consider investigating the
individual times to see which event list is using the most time.

v Line [20]: Shows that the profiling period as 59.27 seconds and the total time by
all clients as 29.98 seconds. The profiling period is approximately the same as
the configured profiling period of 60 seconds; this would be expected if the
system is not over loaded.

Analyze the profiling statistics in the log file and database table to identify which
clients are using the most time and why:
v Determine whether all the client connections are necessary, and drop any

redundant client connections; for example, event lists that are left connected
after operators have vacated the premises.

v If a desktop event list or a Web GUI client is using a lot of time, focus on the
filters that are being used by that client. Analyze the filters both for the number
and complexity of the individual queries, with the aim of making them more
efficient.

v If the client is a probe, performance degradation might be due to poorly-written
rules files that allow unnecessary events to be forwarded to the ObjectServer, the
amount of detail information sent per event, or event flooding.

336 IBM Tivoli Netcool/OMNIbus: Administration Guide

v Increase the granularity period of the ObjectServer to alleviate the effects of
heavy client loads. This action slows down the rate at which the ObjectServer
sends IDUC broadcasts to its clients, and can lead to improved system
performance. However, incoming events will take longer to reach clients,
particularly if the ObjectServer is part of a multitiered architecture.

Related reference:
“ObjectServer properties and command-line options” on page 3
Use the ObjectServer properties or command-line options to configure settings for
the ObjectServer. To avoid errors, add as many properties as possible to the
properties file rather than using the command-line options. Additional utilities are
provided that you can use to encrypt the property values.
“catalog.profiles table” on page 381
The catalog.profiles table contains timing information for running SQL commands
from client connections.

Collect statistical information about triggers
Timing information about triggers, including the number of times the trigger has
been raised and the number of times the trigger has fired, are saved to the
catalog.trigger_stats table.

To collect trigger statistics:
1. Ensure that the Auto.Enabled property of the ObjectServer is set to TRUE. This is

the default setting, and is used to enable the automation system.
2. Use the Auto.StatsInterval property to control the frequency at which the

automation system collects and stores statistical information to the
catalog.trigger_stats table. A default interval of 60 seconds is used if you do not
change this value.

3. Ensure that the trigger_stat_reports trigger group and the trigger_stats_report
trigger are enabled.

You can use Netcool/OMNIbus Administrator to view details that are recorded in
the catalog.trigger_stats table. From the Netcool/OMNIbus Administrator window,
select the System menu button and then click Databases. You can use the Data
View tab on the Databases, Tables and Columns pane to view table data, and use
the Column Definitions tab to view detailed information about the columns in the
table.

Trigger statistics are also logged to the file $NCHOME/omnibus/log/
servername_trigger_stats.logn, where servername represents the ObjectServer
name and n is a number. The trigger statistics log file shows the amount of time
that each trigger has used in the last profiling period. You can use this log file for
automation debugging, and to determine which triggers are slow due to
slow-running SQL queries. Sample output recorded in a trigger statistics log file is
as follows:
[1] Mon Oct 12 18:03:56 2009: Trigger Profile Report
[2] Mon Oct 12 18:03:56 2009: Trigger Group ’compatibility_triggers’
[3] Mon Oct 12 18:03:56 2009: Trigger Group ’system_watch’
[4] Mon Oct 12 18:03:56 2009: Trigger time for ’system_watch_shutdown’: 0.000000s
[5] Mon Oct 12 18:03:56 2009: Trigger time for ’system_watch_startup’: 0.000000s
[6] Mon Oct 12 18:03:56 2009: Trigger Group ’sae’
[7] Mon Oct 12 18:03:56 2009: Trigger time for ’update_service_affecting_events’: 0.006790s
[8] Mon Oct 12 18:03:56 2009: Trigger Group ’default_triggers’
[9] Mon Oct 12 18:03:56 2009: Trigger time for ’deduplication’: 0.341918s
[10] Mon Oct 12 18:03:56 2009: Trigger time for ’deduplication_eval’: 0.092659s
[11] Mon Oct 12 18:03:56 2009: Trigger time for ’service_update’: 0.000000s
[12] Mon Oct 12 18:03:56 2009: Trigger time for ’clean_journal_table’: 0.000172s
[13] Mon Oct 12 18:03:56 2009: Trigger time for ’service_insert’: 0.000000s
[14] Mon Oct 12 18:03:56 2009: Trigger time for ’service_reinsert’: 0.000000s

Chapter 8. Performance tuning 337

[15] Mon Oct 12 18:03:56 2009: Trigger time for ’clean_details_table’: 0.000083s
[16] Mon Oct 12 18:03:56 2009: Trigger time for ’state_change’: 0.075508s
[17] Mon Oct 12 18:03:56 2009: Trigger time for ’deduplication_copy’: 0.022087s
[18] Mon Oct 12 18:03:56 2009: Trigger time for ’new_row’: 0.002637s
[19] Mon Oct 12 18:03:56 2009: Trigger time for ’deduplicate_details’: 0.000000s
[20] Mon Oct 12 18:03:56 2009: Trigger Group ’connection_watch’
[21] Mon Oct 12 18:03:56 2009: Trigger time for ’connection_watch_connect’: 0.000000s
[22] Mon Oct 12 18:03:56 2009: Trigger time for ’connection_watch_disconnect’: 0.000000s
[23] Mon Oct 12 18:03:56 2009: Trigger Group ’primary_only’
[24] Mon Oct 12 18:03:56 2009: Trigger time for ’generic_clear’: 5.879707s
[25] Mon Oct 12 18:03:56 2009: Trigger time for ’expire’: 0.008233s
[26] Mon Oct 12 18:03:56 2009: Trigger time for ’delete_clears’: 0.007219s
[27] Mon Oct 12 18:03:56 2009: Trigger time for ’enrich_and_correlate’: 23.007219s
[28] Mon Oct 12 18:03:56 2009: Trigger Group ’security_watch’
[29] Mon Oct 12 18:03:56 2009: Trigger time for ’disable_user’: 0.000000s
[30] Mon Oct 12 18:03:56 2009: Trigger time for ’reset_user’: 0.000000s
[31] Mon Oct 12 18:03:56 2009: Trigger time for ’security_watch_security_failure’: 0.000000s
[32] Mon Oct 12 18:03:56 2009: Trigger Group ’profiler_triggers’
[33] Mon Oct 12 18:03:56 2009: Trigger time for ’profiler_group_report’: 0.065094s
[34] Mon Oct 12 18:03:56 2009: Trigger time for ’profiler_report’: 0.087705s
[35] Mon Oct 12 18:03:56 2009: Trigger time for ’profiler_toggle’: 0.000000s
[36] Mon Oct 12 18:03:56 2009: Trigger Group ’trigger_stat_reports’
[37] Mon Oct 12 18:03:56 2009: Trigger time for ’trigger_stats_report’: 0.198813s
[38] Mon Oct 12 18:03:56 2009: Trigger Group ’iduc_triggers’
[39] Mon Oct 12 18:03:56 2009: Trigger time for ’disconnect_iduc_missed’: 0.000000s
[40] Mon Oct 12 18:03:56 2009: Trigger time for ’iduc_stats_update’: 0.000949s
[41] Mon Oct 12 18:03:56 2009: Trigger time for ’iduc_messages_tblclean’: 0.000089s
[42] Mon Oct 12 18:03:56 2009: Trigger time for ’deduplicate_iduc_stats’: 0.000000s
[43] Mon Oct 12 18:03:56 2009: Trigger time for ’iduc_stats_insert’: 0.000000s
[44] Mon Oct 12 18:03:56 2009: Trigger Group ’automatic_backup_system’
[45] Mon Oct 12 18:03:56 2009: Trigger time for ’backup_succeeded’: 0.000000s
[46] Mon Oct 12 18:03:56 2009: Trigger time for ’backup_failed’: 0.000000s
[47] Mon Oct 12 18:03:56 2009: Trigger time for ’backup_state_integrity’: 0.000000s
[48] Mon Oct 12 18:03:56 2009: Trigger Group ’gateway_triggers’
[49] Mon Oct 12 18:03:56 2009: Trigger time for ’resync_finished’: 0.000000s
[50] Mon Oct 12 18:03:56 2009: Time for all triggers in report period (60s): 29.789663s

The line numbers are included in the preceding output to help describe the entries:
v Line [1]: Indicates the start of the report and shows the timestamp for when the

report was produced.
v Line [2]: Shows that the report is broken down by trigger group. In this case, the

compatibility_triggers trigger group does not contain any enabled triggers.
v Line [3]: Shows system_watch as the first trigger group that contains enabled

triggers.
v Line [4]: Shows the name of the trigger, and the amount of time (in seconds)

used by the trigger in the last profiling period.
v Line [27]: Indicates an excessive amount of time for the trigger. If this is a

regular occurrence, the trigger would need to be investigated further. For
example, the following questions could apply: Are there table scans in a
database trigger? Are nested scans being used? Could an index be used to
reduce scans? Is the time directly related to the number of events that the
system is dealing with? Does the trigger use an EVALUATE clause that could be
replaced by a FOR EACH clause operating directly on the table with the
ACTION clause?

v Line [50]: Shows the summary line as the last entry in the report. This line
shows the time in seconds since the last report was run, and the total amount of
time used by the triggers in the reporting period. In this example, 29 seconds
out of 60 seconds is a high percentage, so further investigation might be
necessary to determine the cause, particularly if this value is a regular
occurrence.

Analyze the trigger statistics in the log file and database table to determine
whether any workload is causing a degradation in performance:
v If a trigger is identified as using the majority of the granularity period,

investigate the cause.

338 IBM Tivoli Netcool/OMNIbus: Administration Guide

v Review your custom ObjectServer automations to assess their efficiency and to
reduce the workload on the ObjectServer.

v Make sure that trigger execution time is kept to a minimum, because no other
writes can occur while a trigger is being executed.

Tip: When troubleshooting performance, the profile log file and trigger statistics
log file are the first place to investigate. Generally, if the total combined time for
both clients and triggers is consistently over 60 seconds (the default granularity
period), some action needs to be taken. Various operating system metrics can also
be useful in identifying whether a system is under stress. The key metrics are the
CPU utilization and the process size of the Tivoli Netcool/OMNIbus processes.
Related reference:
“catalog.trigger_stats table” on page 384
The catalog.trigger_stats table stores timing information about triggers, including
the number of times the trigger has been raised and the number of times the
trigger has fired. These statistics are gathered unless the automation system is
disabled by setting the -autoenabled command-line option to FALSE.
“Standard Tivoli Netcool/OMNIbus automations” on page 256
A set of standard automations is included with Tivoli Netcool/OMNIbus. These
automations are created during database initialization.

Review and revise your system architecture
Use the multitiered customizations provided with Tivoli Netcool/OMNIbus to
deploy your installation in a one-, two-, or three-tiered architecture, in which the
components sit within collection, aggregation, and display layers.

At a minimum, set up a virtual pair of failover ObjectServers in the aggregation
layer, and then add collection or display components, as required.

If inbound probe traffic is causing problems, consider implementing a collection
layer (if not already in place) with collection ObjectServers that are dedicated to
handling the incoming events before passing them up to the aggregation layer.

If display client traffic is causing problems such as slow response times for users,
consider implementing a display layer (if not already in place) with display
ObjectServers that are dedicated to handling client requests.

If both inbound probe traffic and display client traffic are causing problems,
consider implementing the three-tier architecture with a collection layer,
aggregation layer, and display layer.

Also configure Tivoli Netcool/OMNIbus for high availability to reduce
resynchronization time between the failover pair of ObjectServers, minimize event
loss, and improve data integrity.

Chapter 8. Performance tuning 339

Enable the stats_triggers trigger group
In the default ObjectServer configuration, the stats_triggers group uses triggers to
gather several statistics and metrics. You can enable the trigger group in a
production environment.

The triggers in the stats_triggers trigger group count the number of inserts to the
alerts.status table, the number of inserts to the alerts.details table, the number of
inserts to the alerts.journal table, and the number of deduplications. These counts
are stored in the master.activity_stats table and are aggregated by the
statistics_gather trigger.

To monitor the number of rows in the alerts.status table, alerts.details table, and
alerts.journal table, enable the stats_triggers group and the statistics_gather
automation. To enable triggers, use the nco_config command to start
Netcool/OMNIbus Administrator, or use the ALTER TRIGGER GROUP command.
The data gathered by this trigger group and automation is written periodically to
the master.stats table. The default interval is 300 seconds; this value is configurable.
The following table describes the column to which the count of the number of
rows is written:

Table 95. Columns to which event count is written for ObjectServer tables

Table Column to which the count is written

alerts.status EventCount

alerts.details DetailCount

alerts.journal JournalCount

Related concepts:
Chapter 4, “Using Netcool/OMNIbus Administrator to configure ObjectServers,”
on page 63
The ObjectServer stores, manages, and processes alert and status data that is
collected by external applications such as probes and gateways. You can use
Netcool/OMNIbus Administrator to configure your ObjectServer objects and to
configure process control.
Related reference:
“Modifying a trigger group (ALTER TRIGGER GROUP command)” on page 231
Use the ALTER TRIGGER GROUP command to enable or disable an existing
trigger group.
“master.stats table” on page 384
The master.stats table stores timing information about the alerts.status,
alerts.details, and alerts.journal tables. This timing information is gathered if the
stats_triggers trigger group is enabled. The stats_triggers trigger group is disabled
by default in the automation.sql file.

340 IBM Tivoli Netcool/OMNIbus: Administration Guide

Review and revise your probe configuration files
Carefully review the probe properties file and rules file settings to ensure that
neither introduce any inefficiency to incoming event processing.

In general, keep both configuration files as simple as possible. If high event
throughput is expected, consider the use of multiple probes to gather the incoming
events - this is more likely to minimize probe slowdown and dropped events.

Configure event flood detection
Configure your probes to detect when they are subject to an event flood or other
anomalous event rates, and to perform remedial actions.

Sample rules files are provided in the $NCHOME/omnibus/extensions/eventflood
directory, which you can use for this configuration.

Manage the volume of information in the alerts.details table
When a high volume of alert information is stored in the alerts.details table,
ObjectServer performance significantly deteriorates.

Use the following guidelines to manage the volume of information that is stored in
this table.
v Ensure that the clean_details_table automation is enabled on both your primary

and backup ObjectServers. This automation performs housekeeping cleanup on
the alerts.details table, and deletes any entries not found in the alerts.status
table.

v Avoid using details($*) in probe rules files, to add all the alert information to
the alerts.details table. For each alert in the alerts.status table, multiple rows
might be added to the alerts.details table because the details($*) command in
the rules file records each token as one row. After using details($*) for long
periods of time, the ObjectServer tables become very large and the performance
of the ObjectServer suffers. Only use details($*) when you are debugging or
writing rules files.
If you need to add more information for the alert, use the details statement to
add specific elements or use a regular expression to extract specific elements
from the details. For example, details($a,$b) adds the elements $a and $b to
the alerts.details table.
Note also that each details entry requires a separate INSERT statement, so for
an event with 20 details entries, 21 inserts will be made to the ObjectServer. An
event with no details will, however, be a single insert.

v From the SQL interactive interface, use the DELETE SQL command to clear all
the records in the alerts.details table. For example:
delete from alerts.details;

Note: Manually deleting data from the alerts.details table is a temporary
solution because the number of details will increase again to a high volume if
the first two guidelines for managing the alerts.details table are not followed.
Instead of using alerts.details, consider using the ExtendedAttr column with the
nvp_add rules file function, and the nvp_get or nvp_set SQL functions to store
those fields that have been put in details.

Chapter 8. Performance tuning 341

Use a monitoring agent to monitor and manage Tivoli
Netcool/OMNIbus resources

An IBM Tivoli Monitoring agent is available for monitoring Tivoli
Netcool/OMNIbus health and performance, automation triggers, and event activity
and distribution. This monitoring agent includes a set of automations that add
further instrumentation to the ObjectServer.

The IBM Tivoli Monitoring for Tivoli Netcool/OMNIbus agent is available for
download as part of the Tivoli Netcool/OMNIbus base installation package. The
prerequisite IBM Tivoli Monitoring software is also available for download.

For information about installing and configuring the monitoring agent, go to the
IBM Tivoli Network Management Information Center at http://
publib.boulder.ibm.com/infocenter/tivihelp/v8r1/index.jsp. From the navigation
pane on the left, locate and expand the relevant Tivoli Netcool/OMNIbus version
node, and then go to the IBM Tivoli Monitoring for Tivoli Netcool/OMNIbus node. A
PDF publication is also available in the PDF documentation set node.

After setting up the monitoring agent, monitor the system resources, and perform
any remedial actions that are required to improve performance or availability.

Review and amend your SQL queries, and create a selection
of well-designed, efficient indexes

It is useful to understand how SQL queries are optimized so that you can construct
efficient SQL queries. Review your existing SQL queries and amend them to
benefit from optimization and indexing.

Read through the SQL query and indexing guidelines provided.

When designing and creating indexes, it is also useful to understand the
characteristics of the ObjectServer database tables and columns, to help you gauge
which indexed columns might help to enhance performance. Integer comparisons
are faster than string comparisons, so if your event data contains strings that are
constants, consider using integers to represent the strings within your rules files,
automations, and filters, and then use conversions to display the strings to users.
For example, the Class column in the ObjectServer is an integer data type, but is
displayed as a string in event lists. You can take the following actions to pass event
data as integers, which are then displayed as strings:
v Revise your probe rules files to set integer values that map to corresponding

strings.
v Revise your automations (and Netcool/Impact policies if applicable) to use the

integer values.
v Revise your filters to use the integer values in WHERE clauses.
v Add conversions that map the integer values to the string values that will be

displayed to users.

You can use the CREATE INDEX SQL command to create indexes, and the DROP
INDEX command to delete redundant indexes. Details about the indexes that you
create are stored in the catalog.indexes table.

342 IBM Tivoli Netcool/OMNIbus: Administration Guide

http://publib.boulder.ibm.com/infocenter/tivihelp/v8r1/index.jsp
http://publib.boulder.ibm.com/infocenter/tivihelp/v8r1/index.jsp

After revising your SQL queries and creating indexes, temporarily set the
MessageLevel property to debug so that the execution time of individual SQL
queries, and indexing details, will be logged. Allow a suitable period of processing
activity.

Examine the ObjectServer log file $NCHOME/omnibus/log/server_name.log to:
v Determine which SQL queries negatively impacted performance; check to see

which queries took too long, or were executed repeatedly.
v Determine which indexes were used.
v Analyze the response times for SQL queries that are frequently used, and assess

whether the benefits are significant or marginal.

The following steps describe how to determine the length of time a specific SQL
query takes to run:
1. Look for an ObjectServer log message that is similar to the following sample:

2010-03-19T14:39:27: Debug: D-OBJ-105-010: Client language command on
connection ID N: [user1][isql][][hostname.ibm.com] [SQL statement].

where SQL statement is the SQL statement you want to analyze.
2. Make a note of the connection ID number N.
3. Look for an ObjectServer log message that is similar to the one shown below,

which contains the same value for N:
2010-03-19T14:39:27: Information: I-OBJ-104-016: Profiler timing submitted from
connection ID N: time in seconds

where the time in seconds is the length of time taken for the SQL query to
run.

Using the following ObjectServer log output as an example:
2010-03-19T14:39:27: Debug: D-OBJ-105-010: Client language command on connection
ID 1: [user1][isql][][hostname.ibm.com] [select * from catalog.indexes;]. 2010-03-
19T14:39:27: Information:
I-OBJ-104-016: Profiler timing submitted from connection ID 1: 0.000265

You can see that it has taken 0.000265 seconds for the select * from
catalog.indexes command to complete.

Note: Setting ObjectServer logging to debug mode can be performed without
taking the ObjectServer offline. This setting can adversely affect performance, so
you must switch off debug logging after the data has been collected.

Chapter 8. Performance tuning 343

Related concepts:
“Indexes” on page 170
You can use indexes to improve the performance of the ObjectServer database. The
use of well-designed indexes can reduce or eliminate the need for full table scans
during the execution of SQL queries, and result in faster data retrieval.
Related tasks:
“Reviewing the results of automatic query optimizations”
A set of optimization rules are automatically applied to SQL queries to determine
the most efficient way to execute the queries. Review the results of this
optimization to see where you can make queries more efficient.
Related reference:
“catalog.indexes table” on page 382
The catalog.indexes table stores information about indexes, including the column
and database table on which the index is based, and the index type.
“SQL query guidelines”
When an SQL query is passed to the ObjectServer, query optimization and query
plans are used to evaluate the available methods for accessing or modifying the
data, and to select the most efficient way to run the query.
“Indexing guidelines” on page 348
Indexing can affect the performance of your SQL queries. Without indexing, a full
database table scan is typically performed when an SQL query runs. Use indexing
to limit the number of rows that are examined.
“Best practices for creating triggers” on page 351
When you create or modify triggers, ensure that the triggers are as efficient as
possible, and have the shortest possible execution time.

Track the performance trends at regular intervals
As time progresses, various factors could affect the performance of the
ObjectServer. Establish a performance baseline and periodically monitor
performance to compare the metrics against those collected previously. Investigate
significant differences above or below the baseline and fine tune as required.

SQL query guidelines
When an SQL query is passed to the ObjectServer, query optimization and query
plans are used to evaluate the available methods for accessing or modifying the
data, and to select the most efficient way to run the query.

The evaluation determines whether index scans or primary keys can be used, or
whether a full table scan must be performed instead. If index scans are used,
indexes are automatically applied to SQL queries that reference indexed columns.

Reviewing the results of automatic query optimizations
A set of optimization rules are automatically applied to SQL queries to determine
the most efficient way to execute the queries. Review the results of this
optimization to see where you can make queries more efficient.

About this task

Query optimization is enabled by default. WHERE clauses in the following SQL
statements are optimized:

344 IBM Tivoli Netcool/OMNIbus: Administration Guide

v DML operations (SELECT, UPDATE, DELETE, GROUP BY, and aggregate
SELECT): The WHERE clause is concatenated with the restriction filter (where
present) and then optimized. For a view, the WHERE clause is concatenated
with the WHERE clause of the view.

v FOR EACH loop
v IF THEN ELSE statement
v EVALUATE statement (GROUP BY, SELECT, and aggregate SELECT)

The following types of queries are not optimized:
v A HAVING clause in a GROUP BY command
v Column in array

Procedure

To review the results of the query optimization:
1. Use the MessageLevel ObjectServer property to set the logging level to debug.

Optimized and unoptimized clauses are logged to the default
$NCHOME/omnibus/log/servername.log file, where servername is the ObjectServer
name.

2. Review the information in the log file, to see which queries are being rewritten
by the ObjectServer to be more efficient, and use it as an aid to improve the
efficiency of the SQL queries that you write.

Related reference:
“ObjectServer properties and command-line options” on page 3
Use the ObjectServer properties or command-line options to configure settings for
the ObjectServer. To avoid errors, add as many properties as possible to the
properties file rather than using the command-line options. Additional utilities are
provided that you can use to encrypt the property values.

Optimization rules for SQL queries
When SQL query optimization occurs, all of the optimization rules are applied to
the condition in the query and then the predicates are reordered.

AND and OR optimization, and the reordering of predicates are applied to SQL
queries as follows.
v “AND optimization”
v “OR optimization” on page 346
v “Reordering of predicates” on page 347

AND optimization

If a WHERE clause consists of multiple predicates that are connected by the AND
operator, optimization occurs only if the same column and comparison operator
are used in every predicate, and the comparison operator is LIKE or equal to (=).

The acceptable format for AND optimization is:
where column operator expr1 AND column operator expr2 AND column operator expr3...

In this WHERE clause, operator is LIKE or = only.

This format is optimized into an ALL list as follows:
where column operator ALL (expr1, expr2, expr3, ...)

Chapter 8. Performance tuning 345

Example 1
Original SQL query:
where Node like ’ibm’ and Node like ’com’

Optimized query:
where Node like all(’ibm’,’com’)

Example 2
Original SQL query:
where Node like ’ibm’ and Node like all(’com’,’uk’)

Optimized query:
where Node like all(’ibm’,’com’,’uk’)

Example 3
Original SQL query:
where Node like all(’ibm’,’com’) and Node like all(’uk’,’london’)

Optimized query:
where Node like all(’ibm’,’com’,’uk’,’london’)

OR optimization

If a WHERE clause consists of multiple predicates that are connected by the OR
operator, optimization occurs only if the same column and comparison operator
are used in every predicate, and the comparison operator is LIKE or equal to (=).

The acceptable format for OR optimization is:
where column operator expr1 OR column operator expr2 OR column operator expr3...

In this WHERE clause, operator is LIKE or = only.

This format is optimized into an ANY list as follows:
where column operator ANY (expr1, expr2, expr3, ...)

Example 1
Original SQL query:
where Node like ’London’ or Node like ’Copenhagen’

Optimized query:
where Node like any(’London’, ’Copenhagen’)

Example 2
Original SQL query:
where Severity = 1 or Severity = any(2,3)

Optimized query:
where Severity = any(1,2,3)

Example 3
Original SQL query:
where Severity = any(1,2) or Severity = any(3,4)

Optimized query:
where Severity = any(1,2,3,4)

346 IBM Tivoli Netcool/OMNIbus: Administration Guide

Reordering of predicates

The optimizer reorders the evaluation of the predicates in a WHERE clause
according to their assigned execution cost.

If the first predicate (that is, the cheapest) in an OR optimization evaluates to
TRUE, the more expensive predicates (that is, any that follow) do not have to be
evaluated. Similarly, in an AND optimization, if the first predicate evaluates to
FALSE, the more expensive predicates do not have to be evaluated.

The assigned execution cost, from lowest to highest, is:
1. True/False
2. Integer comparison
3. String comparison
4. Integer ANY/ALL/IN
5. String ANY/ALL/IN
6. Subselect - that is a nested SELECT statement

Example: AND optimization (a AND b AND c)
Original SQL query:
where Summary like ’tool’ and Serial in (1, 2, 3, 4, 5) and Severity > 2

Optimized reordered query:
where Severity > 2 and Summary like ’tool’ and Serial in (1, 2, 3, 4, 5)

Example: OR optimization (a OR b OR c)
Original SQL query:
where Summary like ’tool’ or Serial in (1, 2, 3, 4, 5) or Severity > 2

Optimized reordered query:
where Severity > 2 or Summary like ’tool’ or Serial in (1, 2, 3, 4, 5)

Manually optimizing queries
When you write queries, adhere to these guidelines to ensure that the queries are
processed as efficiently as possible. The performance difference, for example in the
speed of the Active Event List (AEL) and desktop event lists, obtained by efficient
queries can be significant. For example, in a production system in which the
alerts.status table contains over 30,000 alerts and VARCHAR fields, such as the
Summary field, contain long strings, optimized queries will perform better than
inefficient queries.

Procedure

Use simple SQL conditions instead of regular expressions. The following example
show how a regular expression against a VARCHAR field can be replaced by a
simple SQL condition.
This example is a bad SQL condition that worsens performance.
Summary LIKE ’NETCOOL|netcool’

The previous regular expression can be replaced by the following simple condition.
Summary LIKE ’NETCOOL’ OR Summary LIKE ’netcool’

Chapter 8. Performance tuning 347

Indexing guidelines
Indexing can affect the performance of your SQL queries. Without indexing, a full
database table scan is typically performed when an SQL query runs. Use indexing
to limit the number of rows that are examined.

Tivoli Netcool/OMNIbus supports hash and tree index structures. The hash index
supports equality comparisons in SQL queries. The tree index is an ordered index
that stores column values in a sorted structure, and allows a wider range of
comparisons, including equality, in SQL queries. Consequently, a tree index can be
used in range queries and in queries with an ORDER BY clause.

Indexes are rebuilt whenever the ObjectServer is restarted, and these indexes use
up a small amount of memory rather than physical disk space.

You can create indexes on all ObjectServer tables except the tables in the system
databases, such as the catalog and security databases. Tivoli Netcool/OMNIbus
also supports the use of indexes by sub-select clauses in SQL queries.

Although there is no limit on the number of indexes that you can create on a table,
you must use indexes sparingly. Indexes incur a performance overhead because
they are updated when insert, update, or delete operations are performed on the
table on which they are based. For tables such as alerts.status, which are updated
frequently, creating a large number of indexes can adversely affect the overall
performance of the ObjectServer. Evaluate the tradeoff between indexing for fast
retrieval of data and the performance degradation during insert, update, and
delete operations.

Avoid indexing tables that contain only small amounts of data. Also avoid
indexing columns that contain data values which frequently change.

The following columns are considered good candidates for indexing:
v Columns that are searched or sorted against frequently; that is, columns

typically used in ORDER BY clauses
v Columns that are frequently used in WHERE clauses that contain the predicate

formats supported for indexing; see Table 96 on page 349
v Columns with data that contains few duplicate values

Columns that are defined as primary keys are, by default, uniquely indexed. These
special, implicit indexes are not stored in the catalog.indexes table. The Serial
column in the alerts.status table is indexed by default.

Indexing restrictions on columns are as follows:
v Only one index per column is allowed.
v A column that is defined as Boolean cannot have a tree index.

During SQL processing, both the restriction filter for the table and the WHERE
clause in each SELECT, UPDATE, DELETE, FOR EACH ROW, and EVALUATE
statement is examined to determine whether an index scan should be performed
instead of a full table scan. An index scan is performed when one or more
predicates fulfills the following conditions:
v The predicate uses the equality operator (=) in the format ColumnName =

ConstantExpression, where ColumnName is an indexed column.

348 IBM Tivoli Netcool/OMNIbus: Administration Guide

v The predicate uses the less than (<), less than or equal to (<=), greater than (>),
or greater than or equal to (>=) operator, providing ColumnName is an indexed
column of type tree.

v The predicate is not connected to another predicate by an OR operator. For
example, if the Severity or Serial field is indexed, an index is not used in the
following SQL query:
select Summary from alerts.status where Severity > 3 or Serial = 102;

The following table summarizes which predicate formats are supported for hash
and tree indexes.

Table 96. Predicate formats for hash and tree indexes

Predicate format Hash index Tree index

ColumnName = ConstantExpression Yes Yes

ColumnName < ConstantExpression No Yes

ColumnName > ConstantExpression No Yes

ColumnName <= ConstantExpression No Yes

ColumnName >= ConstantExpression No Yes

ColumnName %= ConstantExpression

ColumnName %< ConstantExpression

ColumnName %> ConstantExpression

ColumnName %<= ConstantExpression

ColumnName %>= ConstantExpression

No No

Related concepts:
“Indexes” on page 170
You can use indexes to improve the performance of the ObjectServer database. The
use of well-designed indexes can reduce or eliminate the need for full table scans
during the execution of SQL queries, and result in faster data retrieval.
Related reference:
“Example usage of indexes with SQL queries”
These examples show how indexes can be applied to SQL queries.
“Example usage of indexes with triggers or procedures” on page 351
This example shows how indexes can be applied to triggers or procedures. The
example is a correlation between two types of events, Type 14 and Type 15, such
that if they both occur on the same host, they are cleared.

Example usage of indexes with SQL queries
These examples show how indexes can be applied to SQL queries.

Example 1

If the Severity or Serial field is indexed, the index on the Severity field (providing
it is a tree index) can be used in the following SQL query because all the rows will
have to meet the expression Severity > 3. The index on the Serial field is not used
because an OR operator is used to connect two predicates.
select Summary from alerts.status where

Severity > 3 and (Serial = 102 or ServerName = ’NCOMS’);

Chapter 8. Performance tuning 349

Example 2

If a tree index is created on the Severity field, the index on the Severity field can
be used in the following SQL query. However, an index on LastOccurrence cannot
be used because of the OR operator between the LastOccurrence > getdate() -
360 predicate and the Summary like ’LinkUp’ predicate. Note, however, that the
expression getdate() - 360 is considered constant for the duration of the query.
select Summary, Severity, Node from alerts.status where

Severity > 1 and (LastOccurrence > getdate() - 360 or Summary like ’LinkUp’)

Example 3

Consider the following query:
select Summary from alerts.status where Severity > 0;

For a comparison operator like >, >=, <, or <= to be used with an index, a tree
index (which is an ordered index) is required. If only 100 rows out of 20,000 have
Severity 0, such an index will reduce the number of rows examined by only 0.5%,
and will not provide a significant performance benefit. Therefore, the actual row
data must be taken into account to decide which column to index.

Example 4

If a hash index is created on the Node column, when the following SQL query
runs, only three hash lookups are performed for tool, bar, and toolbar instead of
examining each row for equality of Node and one of the three values.
select Identifier from alerts.status where Node in (’tool’, ’bar’, ’toobar’);

Example 5

If a tree index is created on the Severity column, when the following SELECT
statement is processed, only Severity values 2 and 3 are searched for and returned.
select * from alerts.status where Severity > 1 and Severity < 4;

If an ORDER BY clause includes more than one column, an index is used for the
first column, if available.
select Identifier, Serial from alerts.status order by Severity;

Example 6

If there are 20,000 rows in the alerts.status table, and an index on the ServerSerial
field is applied to the following query, only two rows are examined instead of
20,000:
select Summary from alerts.status where ServerSerial in (102,103);

Example 7

Tivoli Netcool/OMNIbus supports the use of indexes by sub-select clauses in SQL
queries, such as in the following examples:
select * from alerts.status where Identifier in (select key from alerts.bar);

select * from alerts.status where Serial in
(select serial from alerts.broken_events);

350 IBM Tivoli Netcool/OMNIbus: Administration Guide

Example usage of indexes with triggers or procedures
This example shows how indexes can be applied to triggers or procedures. The
example is a correlation between two types of events, Type 14 and Type 15, such
that if they both occur on the same host, they are cleared.
create procedure correlation
begin
for each x in alerts.status where Type = 14
begin
for each y in alerts.status where y.Node = x.Node
and y.AlertGroup = x.AlertGroup and Type = 15
begin
update alerts.status set Severity = 0
where Identifier in (y.Identifier, x.Identifier)
end
end
end;

In this example, any event of Type 14 and 15 will be cleared if both exist for the
same node and AlertGroup.

If there are 10,000 events of Type 14 and 10,000 events of Type 15, and there are,
on average, 10 events per unique Node, the following results are possible:
v Without indexing, the inner WHERE clause will scan over 10,000 * 20,000 rows;

that is, 200 million rows. This will be slow, and is the reason why nested FOR
EACH ROW statements are not advisable without good indexing.

v With an index on the Type column, the inner WHERE clause will scan 10,000 *
10,000 rows; that is, 100 million rows. This will be slow, but is half the number
of rows scanned when indexing is not used.

v With an index on the Node column, the inner WHERE clause will scan 10,000 *
10 rows; that is, 100,000 rows. This will be performant.

Note: The scan performed by the UPDATE statement will always use the primary
key.

Best practices for creating triggers
When you create or modify triggers, ensure that the triggers are as efficient as
possible, and have the shortest possible execution time.

A trigger has exclusive access to the ObjectServer database for the duration of its
execution. By minimizing the execution time of a trigger, you can free up time for
other triggers or clients that require access to the database. It is important to
reduce the execution of database triggers because they interrupt the execution of a
database operation, and so slow down the operation. For example, a pre-insert
trigger on the alerts.status table fires for every new event. So, if an event flood
occurs, the trigger is executed multiple times.

The ObjectServer records the amount of time that each trigger uses during each
granularity period and saves the details in the $NCHOME/omnibus/log/
servername_trigger_stats.logn file. Use this file to identify which triggers are
using the most time, prioritize which triggers to review, and monitor the system.
In general, review a trigger if it uses more than 3 seconds of time every 60 seconds
(that is, the default granularity period).

Whenever you update your triggers, review the log file to verify that your changes
do not cause a degradation in performance.

Chapter 8. Performance tuning 351

Use the following guidelines to improve the performance of your triggers.

Avoid table scans in database triggers

Table scans are expensive operations and can occur when SQL statements such as
FOR EACH ROW are applied to a database table. In a database trigger, the cost of
these scans is high if the trigger fires frequently and if the table has a large number
of rows. For example, if you change the deduplication trigger on the alerts.status
table that every time the trigger fires it scans alerts.status for rows matching a set
of criteria. In this case, the scalability of the system is limited, because the database
trigger takes longer and longer as the number of rows that need to be scanned
increases. Also avoid nested scans.

You can use the following techniques to avoid the table scan in database triggers:
v Perform the scan in a temporal trigger that is written so that one scan can match

many rows. See the generic_clear trigger in $NCHOME/omnibus/etc/
automation.sql for an example.

v If using a lookup table to enrich events, access the lookup table by using its
primary key, as described further on. The use of the primary key results in a
direct lookup of the row rather than a scan (V7.2, or later). You can also limit the
size of the lookup table. The number of rows that are acceptable for a lookup
table is site-specific. It also depends on factors such as how often the lookup
table is accessed, and hardware performance.

v Access a lookup table by using an index.

Avoid the EVALUATE clause

When a trigger contains an EVALUATE clause, a temporary table is created to hold
the results of the SELECT statement in the EVALUATE clause. The amount of time
and resources that this temporary table consumes depends on the number of
columns that are selected and the number of rows matched by the condition in the
WHERE clause.

In most cases, you can replace the EVALUATE clause with a FOR EACH ROW
clause. The FOR EACH ROW clause reads over the data and does not incur the
overhead of creating a temporary table.

A suitable use for an EVALUATE clause is when a GROUP BY clause is being
applied to an SQL query.

Avoid excessive use of the WRITE INTO statement for logging
out to file

When triggers is deployed in production environments, comment out or remove
WRITE INFO statements. It is advisable to limit the use of WRITE INFO
statements to development environments, for debugging triggers. The quantity of
data that is logged during debugging might cause a bottleneck in production
environments.

Determine what is suitable for your system. For example, if the logging is
infrequently called, there is probably no issue. However, if logging is called
multiple times per INSERT statement (for example, within a nested loop), there
could be a bottleneck.

352 IBM Tivoli Netcool/OMNIbus: Administration Guide

Where possible, use the primary key when modifying rows

If the primary key of a database table is used in the WHERE clause of an UPDATE
statement, the row is accessed by using direct lookup, rather than a table scan. For
example:
update alerts.status where Identifier = tt.Identifier set Severity = Severity + 1;

Note: The VIA keyword is no longer required in V7.2, or later. The following
command (which uses VIA) is equivalent to the preceding command:
update alerts.status VIA Identifier = tt.Identifier set Severity = Severity + 1;

Use indexes when using lookup tables

In V7.2, or later, the ObjectServer uses an index to access rows in a table if the
primary key is used in a FOR EACH ROW statement.

This functionality is most useful where an ObjectServer table is being used as a
lookup table, for example to enrich events. In such a case, design the table and
triggers to access the lookup table by its primary keys, to prevent costly full table
scans. For example:
create table alerts.iplookup persistent
(
IpAddr varchar(32) primary key,
HostName varchar(8),
Owner varchar(40)
);

create or replace trigger set_hostname
group madeup_triggers
priority 10
before insert on alerts.status
for each row
begin
-- Access the lookup table using the primary key
for each row tt in alerts.iplookup where tt.IpAddr = new.Node
begin
set new.Hostname = tt.HostName;
end;
end;

Review and modify triggers produced from migrating from V3.6

If you migrated from V3.6 to V7.2.1, as part of an upgrade to the current version,
the V7.2.1 migration tool produces best-effort replications of the V3.6 triggers.
When you then upgrade to the current version, these are functionally correct, but
might not perform efficiently. Review and modify these triggers as follows:
v The V3.6 ObjectServer supported only temporal triggers, while V7.0 or later,

includes database and signal triggers. The processing that is performed by a
temporal trigger in V3.6 might be better suited to a database trigger in V7.0 or
later. Because the triggers are converted only on a like-for-like basis, identify
which triggers can be better implemented by using the new trigger types.

v Where V3.6 triggers have the condition select *, the migration tool implements
the condition as an EVALUATE clause, where all the columns in the alerts.status
table are selected. Where possible, replace the EVALUATE clause with a FOR
EACH ROW statement.

v When migrating from V3.6, the migration tool also creates generic clear triggers
that work in the same manner as in V3.6. However, the triggers supplied in

Chapter 8. Performance tuning 353

V7.0, or later, are more efficient. Therefore, it is advisable to use the V7.0 or later
triggers, which are by default disabled, instead of using the triggers migrated
from V3.6.

Use the generic_clear trigger as a basis for correlation type
triggers

The standard generic_clear trigger (see $NCHOME/omnibus/etc/automation.sql)
correlates resolution events with their related problem events. After this trigger
runs, all matched rows have their severity set to 0, in readiness for removal by the
delete_clears automation. If you need different types of correlation trigger, base
these triggers on the generic_clear trigger.

The standard generic_clear trigger does not use the EVALUATE clause to select the
events. Instead it uses the FOR EACH ROW construct to loop over the events to
populate a temporary table with the problem events. Because this temporary table
contains only a subset of the events in the alerts.status table, the cost of the update
operation that is applied to relate the problems with resolutions is reduced.
Additionally, because the identifier of the problem event is stored in the temporary
table, the problem events can be updated directly in alerts.status by using the
UPDATE VIA command to perform a direct lookup on the row; this takes
advantage of the Identifier field being a primary key.

Use deduplication to clear events where possible

The deduplication trigger can be used to clear problem events with the incoming
resolution event when there is a one-to-one mapping between the problem and
resolution. The following modification is required to your existing system:
v Write the probe rules so that the problem and resolution events have the same

identifier.
v Modify the deduplication trigger so that when it fires, it checks the Type field. If

the type of the incoming event is set to 1 (resolution), set the severity of the
existing event to 0.

This approach reduces the amount of processing for the generic_clear trigger to
perform. It leaves the trigger to resolve cases where a single resolution event can
clear many problem events.

Notes on creating automations

Use the following best practice guidelines create new automations:
v Confirm whether an automation currently exists before attempting to create new

automations with the same function.
v In any WHERE conditions within the automation, use the guidelines for

reordering of predicates in SQL queries. For example, compare integers, compare
characters, and then compare regular expressions. For more information, see
“Optimization rules for SQL queries” on page 345.

v Ensure that the automation trigger does not acquire events which were
previously processed, especially in the case of external scripts.

v For temporal triggers, set the firing interval of different triggers to prevent them
from being activated together.

v Add a description to all newly created automations.
v Automations can update the journal entry if they modify events in the

ObjectServer database.

354 IBM Tivoli Netcool/OMNIbus: Administration Guide

Test your changes

After new triggers are developed and validated, test the performance of the
triggers as follows:
1. Ensure that the data on which you run the tests is representative of the

production system.
2. Ensure that the number of rows in any table that the trigger accesses is

representative of the production system.
3. Measure the effect on system performance by using profiling and by collecting

trigger statistics.

Chapter 8. Performance tuning 355

356 IBM Tivoli Netcool/OMNIbus: Administration Guide

Appendix A. ObjectServer tables

The ObjectServer database contains the following tables: alerts tables, service
tables, system catalog tables, statistics tables, client tool support tables, desktop
tools tables, desktop ObjectServer tables, security tables, IDUC channel tables, and
service-affected events tables.

The ObjectServer database tables are stored in $NCHOME/omnibus/db on UNIX
systems and %NCHOME%\omnibus\db on Windows systems.

Alerts tables
Alert information is forwarded to the ObjectServer from external programs such as
probes and gateways. This information is stored and managed in database tables,
and displayed in the event list.

alerts.status table
The alerts.status table contains status information about problems that have been
detected by probes.

Note: You can display only columns of type CHAR, VARCHAR, INCR, INTEGER,
and TIME in the event list. Do not add columns of any other type to the
alerts.status table.

The following table describes the columns in the alerts.status table.

Table 97. Columns in the alerts.status table

Column
name Data type Mandatory Description

Identifier varchar(255) Yes Controls ObjectServer deduplication. The Identifier field controls
the deduplication feature of the ObjectServer, and also supports
compatibility with the GenericClear automation by ensuring
resolution events are properly inserted into the ObjectServer and
not deduplicated with their respective problem events.

The following identifier correctly identifies repeated events in a
typical environment:

@Identifier=@Node+" "+@AlertKey+"
"+@AlertGroup+" "+@Type+" "+@Agent+"
"+@Manager

Additional information might need to be appended to the
Identifier field to ensure correct deduplication and compatibility
with the GenericClear automation. For example, if an SNMP
specific trap contains a status enumeration value in one of its
variable bindings, the specific trap number and the value of the
relevant varbind must be appended to the Identifier field as
follows:

@Identifier=@Node +“ “+ @AlertKey+“
“+@AlertGroup+“ “+@Type+“ “+@Agent+“
“+@Manager+“ “+$specific-trap+“
“+$2

Serial incr Yes The Tivoli Netcool/OMNIbus serial number for the row.

© Copyright IBM Corp. 1994, 2013 357

Table 97. Columns in the alerts.status table (continued)

Column
name Data type Mandatory Description

Node varchar(64) Yes Identifies the managed entity from which the alarm originated.
This could be a device or host name, service name, or other entity.

For IP network devices or hosts, the Node column contains the
resolved name of the device or host. In cases where the name
cannot be resolved, the Node column must contain the IP address
of the device or host.

For non-IP network devices or hosts, alarms must contain similar
information to the IP device or host. That is, the Node column
must contain the name of the device or host which allows direct
communication, or can be resolved to allow direct communication,
with the device or host.

NodeAlias varchar(64) No The alias for the node. For network devices or hosts, this should be
the logical (layer-3) address of the entity. For IP devices or hosts,
this must be the IP address.

For non-IP devices or hosts, there are several addressing schemes
that could be used. When selecting a value for the NodeAlias field,
the value should allow for direct communication with the device
or host. For example, a device managed by TL-1. The NodeAlias
field may be populated by a lookup table or Netcool/Impact
policy, with the IP address and port number of the terminal server
through which the TL-1 device can be reached.

Manager varchar(64) Yes The descriptive name of the probe that collected and forwarded
the alarm to the ObjectServer. This can also be used to indicate the
host on which the probe is running. Ideally this is set in the
properties file of the probe, however the rules file should check to
ensure it is set correctly, and modify if necessary.

For example, the following syntax can be used to define the
Manager field:

@Manager="MTTrapd Probe on" + hostname()

358 IBM Tivoli Netcool/OMNIbus: Administration Guide

Table 97. Columns in the alerts.status table (continued)

Column
name Data type Mandatory Description

Agent varchar(64) No The descriptive name of the sub-manager that generated the alert.

Probes which process SNMP traps must set the Agent field to
either the name of the vendor or the standards body which defined
the trap, and provide a description of the MIB, or MIB Definition
Name, where the trap is defined. It must be presented in the
following format: vendor-MIB description

For example::

Cisco-Accounting Control, Cisco-Health Monitor,
IETFBRIDGEMIB, ATMF-ATM-FORUM-MIB

Optionally, vendor-specific information, such as device model
numbers, can be appended to the Agent field for vendor-specifc
implementations of standard traps.

The Syslog probe should set the Agent field to the name of the
vendor which defined the received message, and provide any
logical description for the family of messages to which the received
message belongs.

For example, Cisco defines messages received from IOS-based
devices in separate documentation from messages received from
the PIX Firewall. The format of the messages is also slightly
different. Therefore the Syslog messages received from Cisco will
have the Agent field set to either Cisco-IOS or Cisco- PIX
Firewall.

The TL-1 TSM should set the Agent field to the name of the
vendor which defined the received message, and provide any
logical description for the family of messages to which the received
message belongs.

AlertGroup varchar(255) No The descriptive name of the failure type indicated by the alert. For
example:

Interface Status or CPU Utilization).

The AlertGroup field must contain the same value for related
problem and resolution events.

For example, SNMP trap 2 (linkDown) and trap 3 (linkUp) must
both contain the same AlertGroup value of Link Status.

The AlertGroup field for a TL-1 message will be set to the value of
the message's alarm type.

Appendix A. ObjectServer tables 359

Table 97. Columns in the alerts.status table (continued)

Column
name Data type Mandatory Description

AlertKey varchar(255) Yes The descriptive key that indicates the managed object instance
referenced by the alert. For example, the disk partition indicated by
a file system full alert or the switch port indicated by a utilization
alert.

Probes that process SNMP traps should set the AlertKey field to
one of the following values (in order of preference):

v The SNMP instance of the managed object which is represented
by the alarm. This is normally obtained by extracting the
instance from the OID of one of the variable bindings of the
trap. Additionally, it might also be contained in a combination of
one or more of the trap's variable binding values. For example,
the first variable binding of a linkDown trap contains the ifIndex
value (interface number) of the interface which failed. The
AlertKey can be set with either of the following:

– @AlertKey = extract($OID1, “\.([0-9]+)$”)

– @AlertKey = $1

v A textual description of the instance derived from the trap name
or trap description. For example, a device with two power
supplies (A and B) might be able to send two separate specific
traps, without variable bindings, to indicate the failed status of
either power supply. The appropriate power supply instance
would need to be derived from the trap definitions of the MIB
and then encoded in the rules file:

switch($specific-trap)
{
case “1”:
@AlertKey = “A”
case “2”:
@AlertKey = “B”
default:
}

v A mixed combination of variable binding values and information
derived from the trap name or trap description. Any instance
information that is not available for the previous two values, but
that is required to ensure correct deduplication and GenericClear
compatibility, is suitable.

The Syslog Probe should set the AlertKey to a textual description
of the instance derived from the log message text. Ideally this is a
textual name of the same managed entity. For example:

Nov 20 13:12:57 device.customer.net
195.180.208.193 19986: 37w0d: %LINK-3-UPDOWN:
Interface FastEthernet0/13, changed state to down

In this example, the AlertKey would be set to FastEthernet0/13
using the following syntax:

@AlertKey = extract($Details, “Interface
(.*), changed”)

Typically the AlertKey field for a TL-1 message is set to the value
of the message's alarm location.

360 IBM Tivoli Netcool/OMNIbus: Administration Guide

Table 97. Columns in the alerts.status table (continued)

Column
name Data type Mandatory Description

Severity integer Yes Indicates the alert severity level, which indicates how the
perceived capability of the managed object has been affected. The
color of the alert in the event list is controlled by the severity
value:

0: Clear. The Clear severity level indicates that one or more
previously reported alarms has been cleared. The alarms have
either been cleared manually by a network operator, or
automatically by a process which has determined the fault
condition no longer exists. Automatic processes, for example the
GenericClear Automation process, typically clear all alarms for a
managed object (the AlertKey) that have the same Alarm Type
and/or probable cause (the Alert Group).

1: Indeterminate. The Indeterminate severity level indicates that the
severity level cannot be determined. Additionally, all problem
resolving alarms are initially defined as indeterminate until they
have been correlated with problem indicating alarms (for example
by the GenericClear Automation), when all correlated alarms are
set to Clear.

2: Warning. The Warning severity level indicates the detection of
potential or impending service affecting faults. If necessary, a
further investigation of the fault should be made to prevent it from
becoming more serious.

3: Minor. The Minor severity level indicates the existence of a
non-service affecting fault condition. Corrective action should be
taken to prevent it from becoming a more serious fault. This
severity level may be reported, for example, when the detected
alarm condition is not currently degrading the capacity of the
managed object.

4: Major. The Major severity level indicates that a service affecting
condition has developed and corrective action is urgently required.
This severity level may be reported, for example, when there is a
severe degradation in the capability of the managed object, and its
full capability must be restored.

5: Critical. The Critical severity level indicates that a service
affecting condition has occurred, and corrective action is
immediately required. This severity level may be reported, for
example, when a managed object is out of service, and its
capability must be restored.

Appendix A. ObjectServer tables 361

Table 97. Columns in the alerts.status table (continued)

Column
name Data type Mandatory Description

Summary varchar(255) Yes Contains text which describes the alarm condition and the affected
managed object instance.

v You must ensure that the information presented in the Summary
field is concise and sufficiently detailed.

v The Summary field must contain, in parenthesis, a description of
the managed object instance provided by the available alarm
data. For example, a linkDown trap from a Cisco device will
contain the ifDescr value in the 2nd variable binding. The text
summary of such an event would be similar to:

“Link Down (FastEthernet0/13)”

v For alarms that relate to thresholds containing the compared or
threshold values, you should select one of the following formats
based on the available data:

– No values provided:

“Link Utilization High (BRI2/0:1)”

– Compared value name provided:

“Link Utilization High: inOctets
Exceeded Threshold (BRI2/0:1)”

– Compared value name and value provided:

“Link Utilization High: inOctets, 7100,
Exceeded Threshold (BRI2/0:1)”

– Threshold name provided:

“Link Utilization High: inOctetsMax
Exceeded (BRI2/0:1)”

– Threshold Value provided:

“Link Utilization High: inOctetsMax, 7000,
Exceeded (BRI2/0:1)”

– Compared value and threshold value provided:

“Link Utilization High: 7100
Exceeded 7000 (BRI2/0:1)”

– Both names and values provided:

“Link Utilization High: inOctets, 7100,
Exceeded inOctetsMax,7000 (BRI2/0:1)”

StateChange time Yes An automatically-maintained ObjectServer timestamp of the last
insert or update of the alert from any source.

FirstOccurr
ence

time Yes The time in seconds (from midnight January 1, 1970) when this
alert was created or when polling started at the probe.

LastOccurr
ence

time Yes The time when this alert was last updated at the probe.

InternalLast time Yes The time when this alert was last updated at the ObjectServer.

Poll integer No The frequency of polling for this alert in seconds.

362 IBM Tivoli Netcool/OMNIbus: Administration Guide

Table 97. Columns in the alerts.status table (continued)

Column
name Data type Mandatory Description

Type integer No The type of alarm, where type refers to the problem or resolution
state of the Alarm. This field is important for the correct correlation
of events by the GenericClear Automation. The following values
are valid for the Type field:

0: Type not set

1: Problem

2: Resolution

3: Netcool/Visionary problem

4: Netcool/Visionary resolution

7: Netcool/ISMs new alarm

8: Netcool/ISMs old alarm

11: More Severe

12: Less Severe

13: Information

Some scenarios cannot be categorized as either a Problem or
Resolution. For example, events which are increasingly becoming
an issue but do not currently represent a failure, and events which
are becoming less of an issue but do not currently indicate the
failure has been completely resolved. In which case, the Type field
must be set to Problem, More Severe or Less Severe to maintain
compatibility with the GenericClear Automation.

For example, the following rule file logic is used for handling traps
associated with BGP Peer Connection Status:

switch ($bgpPeerState)
{
case "1": ### idle
@Severity = 4
@Type = 1
case "2": ### connect
@Severity = 2
@Type = 12
case "3": ### active
@Severity = 2
@Type = 12
case "4": ### opensent
@Severity = 2

@Type = 12
case "5": ### openconfirm
@Severity = 2
@Type = 12
case "6": ### established
@Severity = 1
@Type = 2
default:
@Severity = 2
@Type = 1
}

Appendix A. ObjectServer tables 363

Table 97. Columns in the alerts.status table (continued)

Column
name Data type Mandatory Description

Tally integer Yes Automatically-maintained count of the number of inserts and
updates of the alert from any source. This count is affected by
deduplication.

Class integer Yes The alert class used to identify the probe or vendor from which the
alert was generated. Controls the applicability of context-sensitive
event list tools.

Grade integer No Indicates the state of escalation for the alert:

0: Not Escalated

1: Escalated

Location varchar(64) No Indicates the physical location of the device, host, or service for
which the alert was generated.

OwnerUID integer Yes The user identifier of the user who is assigned to handle this alert.
The default is 65534, which is the identifier for the nobody user.

OwnerGID integer No The group identifier of the group that is assigned to handle this
alert.

The default is 0, which is the identifier for the public group.

Acknowled
ged

integer Yes Indicates whether the alert has been acknowledged:

0: No

1: Yes

Alerts can be acknowledged manually by a network operator or
automatically by a correlation or workflow process.

Flash integer No Enables the option to make the event list flash.

EventId varchar(255) No The event ID (for example, SNMPTRAP-link down). Multiple events
can have the same event ID.

The event ID is populated by the probe rules file and used by IBM
Tivoli Network Manager IP Edition.

ExpireTime integer Yes The number of seconds from the time this alert was last received
by the ObjectServer (LastOccurence) until it is cleared
automatically. Used by the Expire automation.

ProcessReq integer No Indicates whether the alert should be processed by IBM Tivoli
Network Manager IP Edition. This is populated by the probe rules
file and used by IBM Tivoli Network Manager IP Edition.

364 IBM Tivoli Netcool/OMNIbus: Administration Guide

Table 97. Columns in the alerts.status table (continued)

Column
name Data type Mandatory Description

Suppress
Escl

integer Yes Used to suppress or escalate the alert:

0: Normal

1: Escalated

2: Escalated-Level 2

3: Escalated-Level 3

4: Suppressed

5: Hidden

6: Maintenance

The suppression level is manually selected by operators from the
event list.

Customer varchar(64) No The name of the customer affected by this alert.

Service varchar(64) No The name of the service affected by this alert.

PhysicalSlot integer No The slot number indicated by the alert.

PhysicalPort integer No The port number indicated by the alert.

Physical
Card

varchar(64) No The card name or description indicated by the alert.

TaskList integer Yes Indicates whether a user has added the alert to the Task List:

0: No

1: Yes

Operators can add alerts to the Task List from the event list.

NmosSerial varchar(64) No The serial number of the event that is suppressing the current
event. Populated by IBM Tivoli Network Manager IP Edition.

NmosObj
Inst

integer No Populated by IBM Tivoli Network Manager IP Edition during alert
processing.

NmosCause
Type

integer No The alert state, populated by IBM Tivoli Network Manager IP
Edition as an integer value:

v 0: Unknown

v 1: Root cause

v 2: Symptom

Nmos
Domain
Name

varchar(64) No The name of the IBM Tivoli Network Manager IP Edition domain
that is managing the event.

By default, this column is populated only for events that are
generated by IBM Tivoli Network Manager IP Edition polls. To
populate this column for other event sources such as probes, you
must modify the rules files.

Appendix A. ObjectServer tables 365

Table 97. Columns in the alerts.status table (continued)

Column
name Data type Mandatory Description

Nmos
EntityId

integer No A unique numerical ID that identifies the IBM Tivoli Network
Manager IP Edition topology entity with which the event is
associated.

This column is similar to the NmosObjInst column, but is more
granular. For example, the NmosEntityId value can represent the
ID of an interface within a device.

Nmos
Managed
Status

integer No The managed status of the network entity for which the event was
raised. Can apply to events from IBM Tivoli Network Manager IP
Edition and from any probe.

You can use this column to filter out events from interfaces that are
not considered relevant.

NmosEvent
Map

varchar(64) No Contains the required IBM Tivoli Network Manager IP Edition
V3.9 or later, eventMap name and optional precedence for the
event, which indicates how IBM Tivoli Network Manager IP
Edition should process the event.

The optional precedence number can be concatenated to the end of
the value, following a period (.). If the precedence is not supplied,
it is set to 0. The following examples show the configuration for an
event map with an explicit event precedence of 900, and another
where the precedence defaults to 0:

v ItnmLinkdownIfIndex.900

v PrecisionMonitorEvent

LocalNode
Alias

varchar(64) Yes The alias of the network entity indicated by the alert. For network
devices or hosts, this is the logical (layer-3) address of the entity, or
another logical address that enables direct communication with the
device. For use in managed object instance identification.

LocalPriObj varchar(255) No The primary object referenced by the alert. For use in managed
object instance identification.

LocalSecObj varchar(255) No The secondary object referenced by the alert. For use in managed
object instance identification.

LocalRoot
Obj

varchar(255) Yes An object that is equivalent to the primary object referenced in the
alarm. For use in managed object instance identification.

Remote
Node
Alias

varchar(64) Yes The network address of the remote network entity. For use in
managed object instance identification.

RemotePri
Obj

varchar(255) No The primary object of a remote network entity referenced by an
alarm. For use in managed object instance identification.

RemoteSec
Obj

varchar(255) No The secondary object of a remote network entity referenced by an
alarm. For use in managed object instance identification.

Remote
RootObj

varchar(255) Yes An object that is equivalent to the remote entity's primary object
referenced in the alarm. For use in managed object instance
identification.

366 IBM Tivoli Netcool/OMNIbus: Administration Guide

Table 97. Columns in the alerts.status table (continued)

Column
name Data type Mandatory Description

X733
EventType

integer No Indicates the alert type:

0: Not defined

1: Communications

2: Quality of Service

3: Processing error

4: Equipment

5: Environmental

6: Integrity violation

7: Operational violation

8: Physical violation

9: Security service violation

10: Time domain violation

X733
Probable
Cause

integer No Indicates the probable cause of the alert.

X733
Specific
Prob

varchar(64) No Identifies additional information for the probable cause of the alert.
Used by probe rules files to specify a set of identifiers for use in
managed object instance identification.

X733
CorrNotif

varchar(255) No A listing of all notifications with which this notification is
correlated.

ServerName varchar(64) Yes The name of the originating ObjectServer. Used by gateways to
control propagation of alerts between ObjectServers.

ServerSerial integer Yes The serial number of the alert on the originating ObjectServer (if it
did not originate on this ObjectServer). Used by gateways to
control the propagation of alerts between ObjectServers.

URL varchar(1024) No Optional URL which provides a link to additional information in
the vendor's device or ENMS.

Appendix A. ObjectServer tables 367

Table 97. Columns in the alerts.status table (continued)

Column
name Data type Mandatory Description

Extended
Attr

varchar(4096) No Holds name-value pairs (of Tivoli Enterprise Console extended
attributes) or any other additional information for which no
dedicated column exists in the alerts.status table.

Use this column only through the nvp_get, nvp_set, and
nvp_exists SQL functions.

An example of a name-value string is:

Region="EMEA";host="sf01392w";
Error="errno=32: ""Broken pipe"""

In this example, the Region attribute has a value of EMEA, the host
attribute has a value of sf01392w, and the Error attribute has a
value of errno=32: "Broken pipe".

Notice that quotation marks are escaped by doubling them, as
shown with the Error attribute value.

In name-value pairs, the value is always enclosed in quotation
marks (" ") and embedded quotation marks are escaped by
doubling them. The separator between name-value pairs is a
semicolon (;). No whitespace is allowed around the equal sign (=)
or semicolon.
Note: The column can hold only 4096 bytes, so there will be fewer
than 4096 characters if multi-byte characters are used.

OldRow integer No Maintains the local state of the row in each ObjectServer during
resynchronization in the failover pair. This column must not be
added to the gateway mapping files.

The value of OldRow is changed to 1 in the destination
ObjectServer for the duration of resynchronization if the
Gate.ResyncType property of the gateway is set to Minimal.

The default is 0.

ProbeSub
SecondId

integer No For those alerts that a probe sends within the same one-second
interval, and which therefore have the same LastOccurrence value,
an incremental value, starting at 1, is added to the
ProbeSubSecondId field to differentiate the LastOccurrence time.
The default is 0.

MasterSerial integer No Identifies the master ObjectServer if this alert is being processed in
a desktop ObjectServer environment.

This column is added when you run the database initialization
utility nco_dbinit with the -desktopserver option.
Note: MasterSerial must be the last column in the alerts.status
table if you are using a desktop ObjectServer environment.

BSM_
Identity

varchar(1024) No The unique identifier of the resource from where the event
originates, and is used to correlate the event to that resource in
IBM Tivoli Business Service Manager (TBSM).

Related concepts:
“Functions” on page 186
A function processes a data item or items in an SQL command and returns a value.

368 IBM Tivoli Netcool/OMNIbus: Administration Guide

alerts.details table
The alerts.details table contains the detail attributes of the alerts in the system.

The following table describes the columns in the alerts.details table.

Table 98. Columns in the alerts.details table

Column name Data type Description

KeyField varchar(255) Internal sequencing string for uniqueness.

The Keyfield value is composed of an Identifer value plus four #
plus a sequence number starting at a count of 1; for example:

Identifier####1

Where Identifier is a data type of varchar(255), which is used to
relate details to entries in the alerts.status table.

If the Identifier value is over a certain length, there is a possibility
that the Keyfield value could exceed its defined 255 limit,
resulting in truncation of the sequence number. Keyfield values
could therefore no longer be unique, and the unintended
duplication could cause inserts into the alerts.details table to fail.
Tip: To prevent an overflow in KeyField (and ensure uniqueness),
the length of the Identifier value must be sufficiently less than 255
to allow the four # and a sequence number (of one or more digits)
to be appended.

Identifier varchar(255) Identifier to relate details to entries in the alerts.status table.

The Identifier is used to compute the Keyfield value, and is
required to be less than a certain length to ensure that each
computed Keyfield value remains unique. For guidelines on the
maximum length of the Identifier value, see the tip in the
preceding KeyField row.

AttrVal integer Boolean; when false (0), just the Detail column is valid. Otherwise,
the Name and Detail columns are both valid.

Sequence integer Sequence number, used for ordering entries in the event list Event
Information window.

Name varchar(255) Name of attribute stored in the Detail column.

Detail varchar(255) Attribute value.

alerts.journal table
The alerts.journal table provides a history of work performed on alerts.

The following table describes the columns in the alerts.journal table.

Table 99. Columns in the alerts.journal table

Column name Data type Description

KeyField varchar(255) Primary key for table.

Serial integer Serial number of alert that this journal entry is related to.

UID integer User identifier of user who made this entry.

Chrono time Time and date that this entry was made.

Text1 varchar(255) First block of text for journal entry.

Text2 varchar(255) Second block of text for journal entry.

Appendix A. ObjectServer tables 369

Table 99. Columns in the alerts.journal table (continued)

Column name Data type Description

Text3 varchar(255) Third block of text for journal entry.

Text4 varchar(255) Fourth block of text for journal entry.

Text5 varchar(255) Fifth block of text for journal entry.

Text6 varchar(255) Sixth block of text for journal entry.

Text7 varchar(255) Seventh block of text for journal entry.

Text8 varchar(255) Eighth block of text for journal entry.

Text9 varchar(255) Ninth block of text for journal entry.

Text10 varchar(255) Tenth block of text for journal entry.

Text11 varchar(255) Eleventh block of text for journal entry.

Text12 varchar(255) Twelfth block of text for journal entry.

Text13 varchar(255) Thirteenth block of text for journal entry.

Text14 varchar(255) Fourteenth block of text for journal entry.

Text15 varchar(255) Fifteenth block of text for journal entry.

Text16 varchar(255) Sixteenth block of text for journal entry.

alerts.iduc_messages table
The alerts.iduc_messages table is required for multicultural support and is used to
send insert, delete, update, or control (IDUC) client messages. This table ensures
that characters transferred across varying encodings are converted into
recognizable formats.

The following table describes the columns in the alerts.iduc_messages table.

Table 100. Columns in the alerts.iduc_messages table

Column name Data type Description

MsgID integer Primary key for table.

MsgText varchar(4096) Message text sent to an event list by the nco_elct utility. This
utility enables you to open a customized, transient event list.

MsgTime time Time the message was sent.

alerts.application_types table
The alerts.application_types table contains details about application types that
cause connection watch messages to be generated when the applications connect
and disconnect. Use this table to configure the severity of connection and
disconnection events by application type.

For example, a gateway connection is treated as a resolution (clearing a
disconnect), whereas an event list connect is a Type 1 event, which is resolved by a
disconnection. A gateway disconnection is treated as a problem, whereas an event
list disconnection is a resolution. You can use the alerts.application_types table to
configure a gateway to generate a Type 1 event (warning) on disconnection and a
Type 2 event (disconnection cleared) on connection, and configure an event list to
generate a Type 1 event on connection and a Type 2 event (clear) on disconnection.

370 IBM Tivoli Netcool/OMNIbus: Administration Guide

The alerts.application_types table is read by the connection_watch_connect and
connection_watch_disconnect triggers.

You can add a new application type to this table by adding a row, if required. You
can also change the behavior of an application by updating its row.

The following table describes the columns in the alerts.application_types table.

Table 101. Columns in the alerts.application_types table

Column name Data type Description

application varchar(64) Primary key for the table.

This is the internal application name specified as a regular
expression for efficient string matching.

description varchar(64) Descriptive name for the event.

connect_type int Event type for the connection.

connect_severity int Event severity for the connection.

disconnect_type int Event type for the disconnection.

disconnect_severity int Event severity for the disconnection.

expire_time int Number of seconds until the alert is cleared automatically. Used
by the Expire automation.

discard Boolean Set to TRUE if the event is to be suppressed.

master.class_membership table
The master.class_membership table supports the mapping of Tivoli Enterprise
Console classes to Tivoli Netcool/OMNIbus classes, and stores class membership
information. This table is used with the instance_of() SQL function.

The following table describes the columns in the master.class_membership table.

Table 102. Columns in the master.class_membership table

Column name Data type Description

Class integer Primary key for table. Class number as stored in the alert.status
table.

ClassName varchar(255) Name of class.

Parent integer Primary key for table. Parent ID of class.

The root class has a parent ID of -1. If a class has multiple parents,
a row exists for each parent.

The master.class_membership table does not permit duplicate mappings of class
names to class numbers. The table also does not permit multiple entries with either
the same class name or class number. If a duplicate entry is inserted into the table,
a warning message of the following format is written to the ObjectServer log:
Warning: W-OBJ-103-002: Class name ’ClassName’ and number ’class_number’
must be unique, row discarded

Related concepts:
“Functions” on page 186
A function processes a data item or items in an SQL command and returns a value.

Appendix A. ObjectServer tables 371

Service tables
The service table contains information about IBM Tivoli Composite Application
Manager for Internet Service Monitoring.

service.status table
The service.status table is used to control the additional features required to
support IBM Tivoli Composite Application Manager for Internet Service
Monitoring.

The following table describes the columns in the service.status table.

Table 103. Columns in the service.status table

Column name Data type Description

Name varchar(255) Name of the service.

CurrentState integer Indicates the state of the service:

0: Good

1: Bad

2: Marginal

3: Unknown

StateChange time Indicates the last time the service state changed.

LastGoodAt time Indicates the last time the service was Good (0).

LastBadAt time Indicates the last time the service was Bad (1).

LastMarginalAt time Indicates the last time the service was Marginal (2).

LastReportAt time Time of the last service status report.

System catalog tables
The catalog database contains the system tables that are created and maintained by
the ObjectServer. System tables contain metadata about ObjectServer objects.

You can view the information in system tables using the SELECT and DESCRIBE
commands, but you cannot modify these tables.

catalog.memstores table
The catalog.memstores table stores information about memstores, including the
hard and soft limits of the memstore size, and how many bytes are currently being
used.

The following table describes the columns in the catalog.memstores table.

Table 104. Columns in the catalog.memstores table

Column name Data type Description

StoreName varchar(40) Name of the memstore.

HardLimit unsigned Maximum size of the store in memory.

SoftLimit unsigned Current maximum size of the store; can be extended to the hard
limit.

372 IBM Tivoli Netcool/OMNIbus: Administration Guide

Table 104. Columns in the catalog.memstores table (continued)

Column name Data type Description

UsedBytes unsigned The amount of memory (in bytes) being used by the memstore.

IsProtected Boolean Used internally.

catalog.databases table
The catalog.databases table stores information about each database, including the
number of objects in the database and the type of database (system or user).

The following table describes the columns in the catalog.databases table.

Table 105. Columns in the catalog.databases table

Column name Data type Description

DatabaseName varchar(40) Name of the database.

NumTables unsigned Number of base tables and views in the database.

IsSystem Boolean TRUE if this is a system database.

catalog.tables table
The catalog.tables table stores information about all types of tables, including
system and user tables, views, and transition tables.

The following table describes the columns in the catalog.tables table.

Table 106. Columns in the catalog.tables table

Column name Data type Description

TableName varchar(40) Name of the table.

DatabaseName varchar(40) Name of the parent database.

Status integer Current status of the table:

0: Valid

1: Invalid

2: Compile failed

NumDependents unsigned Number of dependents.

TableID integer Table identifier.

TableKind integer Type of table:

0: Base table

1: Transition table

2: View

StorageKind integer Type of storage:

1: Persistent

2: Virtual

4: Transient

Appendix A. ObjectServer tables 373

catalog.base_tables table
The catalog.base_tables table stores information about user and system tables.

The following table describes the columns in the catalog.base_tables table.

Table 107. Columns in the catalog.base_tables table

Column name Data type Description

TableName varchar(40) Name of the table.

DatabaseName varchar(40) Name of the parent database.

StoreName varchar(40) Name of the parent store.

NumColumns integer Number of columns in the table.

CreationTime time Time the table was created.

StorageKind integer Type of storage:

1: Persistent

2: Virtual

IsSystem Boolean TRUE if this is a system table.

IsNoModify Boolean TRUE if the table cannot currently be modified.

UsedBytes unsigned Size (in bytes) of the table. Updated on creation, alteration, and at
a default interval of 60 seconds.

catalog.views table
The catalog.views table stores information about views. The CreationText column
contains the SQL used to create the view.

The following table describes the columns in the catalog.views table.

Table 108. Columns in the catalog.views table

Column name Data type Description

ViewName varchar(40) Name of the view.

DatabaseName varchar(40) Name of the parent database.

CreationText varchar(16384) The CREATE VIEW text used to create the view.

StorageKind integer Type of storage:

1: Persistent

4: Transient

IsRecovered Boolean TRUE if this is a successfully recovered view after restart.

IsDmlEnabled Boolean TRUE if all of the table's primary keys are in the view, and
therefore DML actions can be performed on the view.

IsAggregate Boolean TRUE if this is created from an aggregate SELECT statement.

374 IBM Tivoli Netcool/OMNIbus: Administration Guide

catalog.files table
The catalog.files table stores information about ObjectServer files, including the
path to the operating system file associated with each ObjectServer file.

The following table describes the columns in the catalog.files table.

Table 109. Columns in the catalog.files table

Column name Data type Description

FileName varchar(40) Name of the ObjectServer file.

FilePath varchar(1028) Full path to the file on the file system.

MaximumFiles unsigned Maximum number of files.

MaximumSize unsigned Maximum file size.

IsEnabled Boolean TRUE if information is being logged to this file.

Status integer Current status of the file:

0: Valid

1: Invalid

2: Compile failed

catalog.restrictions table
The catalog.restrictions table stores information about restriction filters. The
ConditionText column contains the SQL condition.

The following table describes the columns in the catalog.restrictions table.

Table 110. Columns in the catalog.restrictions table

Column name Data type Description

RestrictionName varchar(40) Name of the restriction filter.

TableName varchar(40) Name of the table on which the restriction filter has been created.

DatabaseName varchar(40) Name of the parent database.

ConditionText varchar(16384) The condition text for the restriction filter.

CreationText varchar(16384) The CREATE RESTRICTION text used to create the restriction
filter.

catalog.columns table
The catalog.columns table stores information about table columns, including their
data types.

The following table describes the columns in the catalog.columns table.

Table 111. Columns in the catalog.columns table

Column name Data type Description

ColumnName varchar(40) Name of the column.

TableName varchar(40)) Name of the table.

DatabaseName varchar(40) Name of the parent database.

DataType integer Column data type.

Appendix A. ObjectServer tables 375

Table 111. Columns in the catalog.columns table (continued)

Column name Data type Description

Length unsigned Number of characters in the column.

IsPrimaryKey Boolean TRUE if the column is a primary key.

OrdinalPosition unsigned Position in the column list.

IsHidden Boolean TRUE if this is a hidden column.

IsNoModify Boolean TRUE if the column cannot currently be modified.

IsNoDefault Boolean TRUE if the value of this column must be specified in the initial
INSERT command.

IsSystem Boolean TRUE if this is a system column.

catalog.primitive_signals table
The catalog.primitive_signals table stores information about user and system
signals.

The following table describes the columns in the catalog.primitive_signals table.

Table 112. Columns in the catalog.primitive_signals table

Column name Data type Description

SignalName varchar(40) Name of the signal.

IsSystem Boolean TRUE if this is a system signal.

CommentBlock varchar(1024) Comment string specified in the CREATE SIGNAL command.

catalog.primitive_signal_parameters table
The catalog.primitive_signal_parameters table stores information about the
parameters to system and user-defined signals.

The following table describes the columns in the
catalog.primitive_signal_parameters table.

Table 113. Columns in the catalog.primitive_signal_parameters table

Column name Data type Description

ParameterName varchar(40) Name of the parameter.

SignalName varchar(40) Name of signal with this parameter.

DataType integer Parameter data type.

Length unsigned Number of characters in the parameter.

OrdinalPosition integer Position in the parameter list.

376 IBM Tivoli Netcool/OMNIbus: Administration Guide

catalog.trigger_groups table
The catalog.trigger_groups table stores information about trigger groups, including
whether the trigger group is enabled.

The following table describes the columns in the catalog.trigger_groups table.

Table 114. Columns in the catalog.trigger_groups table

Column name Data type Description

GroupName varchar(40) Name of the trigger group.

IsEnabled Boolean TRUE if the trigger group is currently enabled.

catalog.triggers table
The catalog.triggers table stores information about triggers, including the type of
trigger, the trigger priority, and what trigger group it is in.

The following table describes the columns in the catalog.triggers table.

Table 115. Columns in the catalog.triggers table

Column name Data type Description

TriggerName varchar(40) Name of the trigger.

GroupName varchar(40) Trigger group name.

TriggerKind integer Type of trigger:

0: Database

1: Signal

2: Temporal

DebugEnabled Boolean TRUE if debugging is enabled for the trigger.

IsEnabled Boolean TRUE if the trigger is enabled.

TriggerPriority integer Trigger priority: 1 is the highest, 20 is the lowest priority.

CommentBlock varchar(1024) Comment string specified in the CREATE TRIGGER command.

EvaluateBlock varchar(2048) Evaluation clause specified in the CREATE TRIGGER command.

BindName varchar(40) Bind name specified in the evaluation clause of the CREATE
TRIGGER command.

ConditionBlock varchar(1024) When condition specified in the CREATE TRIGGER command.

DeclareBlock varchar(1024) Variable declaration specified in the CREATE TRIGGER command.

CodeBlock varchar(8192) The body of the trigger.

Appendix A. ObjectServer tables 377

catalog.database_triggers table
The catalog.database_triggers table stores information about database triggers,
including the type of database operation that causes the trigger to fire.

The following table describes the columns in the catalog.database_triggers table.

Table 116. Columns in the catalog.database_triggers table

Column name Data type Description

TriggerName varchar(40) Name of the trigger.

EventOrder integer Order of events:

0: Before

1: After

EventOp integer Event operation:

0: Insert

1: Reinsert

2: Update

3: Delete

EventLevel integer Trigger level:

0: Row-level trigger

1: Statement-level trigger

DatabaseName varchar(40) Name of the database.

TableName varchar(40) Name of the table.

catalog.signal_triggers table
The catalog.signal_triggers table stores information about signal triggers, including
the name of the signal that causes the trigger to fire.

The following table describes the columns in the catalog.signal_triggers table.

Table 117. Columns in the catalog.signal_triggers table

Column name Data type Description

TriggerName varchar(40) Name of the trigger.

SignalName varchar(40) Name of the signal.

catalog.temporal_triggers table
The catalog.temporal_triggers table stores information about temporal triggers,
including how often they fire.

The following table describes the columns in the catalog.temporal_triggers table.

Table 118. Columns in the catalog.temporal_triggers table

Column name Data type Description

TriggerName varchar(40) Name of the trigger.

Frequency integer Trigger frequency in seconds.

378 IBM Tivoli Netcool/OMNIbus: Administration Guide

catalog.procedures table
The catalog.procedures table stores information about procedures, including
whether the procedure is an SQL procedure or an external procedure.

The following table describes the columns in the catalog.procedures table.

Table 119. Columns in the catalog.procedures table

Column name Data type Description

ProcedureName varchar(40) Name of the procedure.

Kind unsigned Procedure type:

0: SQL

1: External

catalog.sql_procedures table
The catalog.sql_procedures table stores information about SQL procedures,
including the code for the procedure.

The following table describes the columns in the catalog.sql_procedures table.

Table 120. Columns in the catalog.sql_procedures table

Column name Data type Description

ProcedureName varchar(40) Name of the procedure.

DeclareBlock varchar(16384) Variable declaration specified in the CREATE PROCEDURE
command.

CodeBlock varchar(32768) The body of the procedure.

catalog.external_procedures table
The catalog.external_procedures table stores information about external procedures,
including the name of the procedure executable and the host on which it runs.

The following table describes the columns in the catalog.external_procedures table.

Table 121. Columns in the catalog.external_procedures table

Column name Data type Description

ProcedureName varchar(40) Name of the procedure.

ExecutableName varchar(1024) Name of the executable.

HostName varchar(1024) Name of the host.

UserId varchar(1024) User identifier.

GroupId varchar(1024) Group identifier.

ArgumentsSpec varchar(32768) Arguments specified in the CREATE PROCEDURE text.

Appendix A. ObjectServer tables 379

catalog.procedure_parameters table
The catalog.procedure_parameters table stores information about procedure
parameters, including parameter types.

The following table describes the columns in the catalog.procedure_parameters
table.

Table 122. Columns in the catalog.procedure_parameters table

Column name Data type Description

ParameterName varchar(40) Name of the parameter.

ProcedureName varchar(40) Name of the procedure.

ParameterKind integer Parameter type:

0: Base

1: Row

2: Array

DataType integer Data type of the parameter.

OrdinalPosition integer Position in the argument list.

Length integer Number of characters in the parameter.

TableName varchar(40) If it is a row parameter, this is the parent table of that row.
Otherwise this is an empty string.

DatabaseName varchar(40) If it is a row parameter, this is the parent database of the parent
table of the row. Otherwise this is an empty string.

ParameterMode integer Parameter mode:

1: In

2: Out

3: In/Out

catalog.connections table
The catalog.connections table contains information about connections to the
ObjectServer.

The following table describes the columns in the catalog.connections table.

Table 123. Columns in the catalog.connections table

Column name Data type Description

ConnectionID integer Connection identifier.

LogName varchar(40) Name of the log file for the connected application.

HostName varchar(40) Name of the connected host.

AppName varchar(40) Name of the connected application.

AppDescription varchar(40) Description of the connected application.

IsRealTime Boolean TRUE if the client uses IDUC. Desktops and gateways use IDUC
and are real-time connections.

ConnectTime time Amount of time the client is connected.

380 IBM Tivoli Netcool/OMNIbus: Administration Guide

catalog.properties table
The catalog.properties table contains information about ObjectServer properties.

The following table describes the columns in the catalog.properties table.

Table 124. Columns in the catalog.properties table

Column name Data type Description

PropName varchar(40) Name of the property.

PropGroup varchar(40) Group of the property, such as Auto or Store. Not all properties
belong to a group.

Description varchar(255) Description of the property.

Type integer Data type of the property.

Value varchar(255) Current value of the property.

IsModifyable Boolean TRUE if the property is modifiable.

IsImmediate Boolean TRUE if when the property is changed the effect is immediate.
Otherwise, the ObjectServer must be restarted.

IsAdvanced Boolean TRUE if the property is advanced. Advanced properties should not
be changed without the assistance of IBM Software Support.

catalog.security_permissions table
The catalog.security_permissions table contains permission information for
ObjectServer objects. This table is used only by Netcool/OMNIbus Administrator.

The following table describes the columns in the catalog.security_permissions table.

Table 125. Columns in the catalog.security_permissions table

Column name Data type Description

ApplicationID integer Application identifier.

Object varchar(40) Name of the object.

ObjectType integer Type of object, for example, a table.

ActionID integer64 Identifier for the permission action. Used only by
Netcool/OMNIbus Administrator.

Permission varchar(40) Type of permission.

catalog.profiles table
The catalog.profiles table contains timing information for running SQL commands
from client connections.

SQL profile statistics are also logged to the file $NCHOME/omnibus/log/
servername_profiler_report.logn, at the interval specified in the
ProfileStatsInterval property or -profilestatsinterval command-line option.

The following table describes the columns in the catalog.profiles table.

Table 126. Columns in the catalog.profiles table

Column name Data type Description

ConnectionID integer Connection identifier.

UID integer User identifier.

Appendix A. ObjectServer tables 381

Table 126. Columns in the catalog.profiles table (continued)

Column name Data type Description

AppName varchar(40) Name of the connected application.

HostName varchar(40) Name of the connected host.

ProfiledFrom time Time at which profiling began.

LastSQLTime real Duration, in seconds, of the last SQL command.

MinSQLTime real Shortest running time, in seconds, for this client.

MaxSQLTime real Longest running time, in seconds, for this client.

PeriodSQLTime real Amount of time, in seconds, that the application has spent
running SQL since the last profile report.

TotalSQLTime real Total time, in seconds, for running all SQL commands for this
client.

LastTimingAt time Last time an SQL profile was taken for this client.

NumSubmits integer Number of submissions for this client. A single submission can
contain multiple SQL commands, run with the go command.

TotalParseTime real Records the total amount of time spent parsing commands for this
client.

TotalResolveTime real Records the total amount of time spent resolving commands for
this client.

TotalExecTime real Records the total amount of time spent running commands for
this client.

catalog.indexes table
The catalog.indexes table stores information about indexes, including the column
and database table on which the index is based, and the index type.

The following table describes the columns in the catalog.indexes table.

Table 127. Columns in the catalog.indexes table

Column name Data type Description

IndexName varchar(40) Name of the index.

DatabaseName varchar(40) Database name of the indexed column.

TableName varchar(40) Table name of the indexed column.

ColumnName varchar(40) Name of the indexed column.

IndexKind integer Type of index:

1: Hash

2: Tree

IsValid Boolean TRUE if the index is valid.

FALSE if the index is not valid; for example, due to a memory
allocation failure. To make an index valid again, you can rebuild
the index by restarting the ObjectServer.

382 IBM Tivoli Netcool/OMNIbus: Administration Guide

Statistics tables
Statistics tables contain timing information.

The catalog.profiles table contains timing information for the running of SQL
commands from client connections.

The master.stats table stores timing information about the alerts.status,
alerts.details, and alerts.journal tables.

The catalog.trigger_stats table stores timing information about triggers.

catalog.profiles table
The catalog.profiles table contains timing information for running SQL commands
from client connections. SQL profiling is enabled by using the Profile property or
-profile command-line option.

SQL profile statistics are also logged to the file $NCHOME/omnibus/log/
servername_profiler_report.logn, at the interval specified in the
ProfileStatsInterval property or -profilestatsinterval command-line option.

The following table describes the columns in the catalog.profiles table.

Table 128. Columns in the catalog.profiles table

Column name Data type Description

ConnectionID integer Connection identifier.

UID integer User identifier.

AppName varchar(40) Name of the connected application.

HostName varchar(40) Name of the connected host.

ProfiledFrom time Time at which profiling began.

LastSQLTime real Duration, in seconds, of the last SQL command.

MinSQLTime real Shortest running time, in seconds, for this client.

MaxSQLTime real Longest running time, in seconds, for this client.

PeriodSQLTime real Amount of time, in seconds, that the application has spent
running SQL since the last profile report.

TotalSQLTime real Total time, in seconds, for running all SQL commands for this
client.

LastTimingAt time Last time an SQL profile was taken for this client.

NumSubmits integer Number of submissions for this client. A single submission can
contain multiple SQL commands, run with the go command.

TotalParseTime real Records the total amount of time spent parsing commands for this
client.

TotalResolveTime real Records the total amount of time spent resolving commands for
this client.

TotalExecTime real Records the total amount of time spent running commands for
this client.

Appendix A. ObjectServer tables 383

master.stats table
The master.stats table stores timing information about the alerts.status,
alerts.details, and alerts.journal tables. This timing information is gathered if the
stats_triggers trigger group is enabled. The stats_triggers trigger group is disabled
by default in the automation.sql file.

The following table describes the columns in the master.stats table.

Table 129. Columns in the master.stats table

Column name Data type Description

StatTime time The time that the statistics are collected.

NumClients integer The total number of clients (for example, desktops) connected to
the ObjectServer.

NumRealtime integer The number of real-time clients connected to the ObjectServer.
Desktops and gateways use IDUC and are real-time connections.

NumProbes integer The number of probes connected to the ObjectServer.

NumGateways integer The number of gateways connected to the ObjectServer.

NumMonitors integer The number of monitors connected to the ObjectServer.

NumProxys integer The number of proxy servers connected to the ObjectServer.

EventCount integer The current number of entries in the alerts.status table.

JournalCount integer The current number of entries in the alerts.journal table.

DetailCount integer The current number of entries in the alerts.details table.

StatusInserts integer The total number of inserts into the alerts.status table.

StatusNewInserts integer The number of new inserts into the alerts.status table.

StatusDedups integer The number of reinserts into the alerts.status table.

JournalInserts integer The number of inserts into the alerts.journal table.

DetailsInserts integer The number of inserts into the alerts.details table.

catalog.trigger_stats table
The catalog.trigger_stats table stores timing information about triggers, including
the number of times the trigger has been raised and the number of times the
trigger has fired. These statistics are gathered unless the automation system is
disabled by setting the -autoenabled command-line option to FALSE.

Trigger statistics are also logged to the file $NCHOME/omnibus/log/
servername_trigger_stats.logn.

The following table describes the columns in the catalog.trigger_stats table.

Table 130. Columns in the catalog.trigger_stats table

Column name Data type Description

TriggerName varchar(40) Name of the trigger.

PreviousCondition Boolean Value of the condition the last time the trigger was raised.

PreviousRowcount unsigned Number of rows returned by the EVALUATE clause the last time
the trigger was raised.

NumZeroRowcount unsigned Number of consecutive times the evaluation has returned zero
rows.

384 IBM Tivoli Netcool/OMNIbus: Administration Guide

Table 130. Columns in the catalog.trigger_stats table (continued)

Column name Data type Description

NumPositiveRowcount unsigned Number of consecutive times the evaluation has returned more
one or more rows.

PeriodNumRaises unsigned Number of times the trigger has been raised since the last report.

PeriodNumFires unsigned Number of times the trigger has fired since the last report.

PeriodTime real Amount of time trigger has been operating since the last report.

NumRaises unsigned Number of times the trigger has been raised.

NumFires unsigned Number of times the trigger has been fired.

MaxTime real Maximum amount of time the trigger has taken to run.

TotalTime real Amount of time the trigger has operated since startup.

Note: The catalog.trigger_stats system table is updated periodically, based on the
setting for the Auto.StatsInterval property or -autostatsinterval command-line
option. The default is every 10 seconds.

catalog.channel_stats table
The catalog.channel_stats table holds an entry for each channel currently known
within the ObjectServer. Each entry within the table presents details about the
channel in two parts: statistics for the current statistical collection period, and the
statistical total since the ObjectServer was started.

The following table describes the columns in the catalog.channel_stats table.

Table 131. Columns in the catalog.channel_stats table

Column name Data type Description

ChannelName varchar(64) The name of the channel.

LastTimingAt time The time at which the last statistics update was made; stored as a
UTC.

PeriodNumMsgs int The number of times this channel has been used in the last profile
window.

PeriodTime real The time taken to send messages to all clients in the last profile
period window.

PeriodMaxTime real The maximum time taken to send messages to all clients in the
last profile period window.

PeriodClientNum int The number of clients that were sent messages in the last
invocation.

PeriodMaxClientNum int The maximum number of clients sent messages in the last profile
period window.

NumMsg int The number of times this channel has been used since the server
was started.

TotalTime real The total time taken to send messages to all clients since the
server was started.

MaxTime real The maximum time taken to send messages to all clients since the
server was started.

MaxClientNum int The maximum number of clients sent messages since the server
was started.

Appendix A. ObjectServer tables 385

Table 131. Columns in the catalog.channel_stats table (continued)

Column name Data type Description

TotalClientNum int The total number of clients that were sent messages since the
server was started.

Client tool support tables
The client tool support tables are used by the desktop GUIs to display alert
information.

alerts.resolutions table
The alerts.resolutions table is used to maintain the Resolutions option in the event
list.

The following table describes the columns in the alerts.resolutions table.

Table 132. Columns in the alerts.resolutions table

Column name Data type Description

KeyField varchar(255) Primary key for the table.

Tag integer Class value for this resolution.

Sequence integer Sequence number which sets ordering at display time.

Title varchar(64) Title of the resolution.

Resolution1 varchar(255) First line of text for the resolution.

Resolution2 varchar(255) Second line of text for the resolution.

Resolution3 varchar(255) Third line of text for the resolution.

Resolution4 varchar(255) Fourth line of text for the resolution.

alerts.conversions table
The alerts.conversions table is used to provide easy conversion from a numeric
value to a string for any column.

The following table describes the columns in the alerts.conversions table.

Table 133. Columns in the alerts.conversions table

Column name Data type Description

KeyField varchar(255) Primary key for the table; internal sequencing string (comprised of
Colname and Value).

Colname varchar(255) Name of the column this conversion is appropriate for.

Value integer Numeric value for the conversion.

Conversion varchar(255) String value for the conversion.

386 IBM Tivoli Netcool/OMNIbus: Administration Guide

alerts.col_visuals table
The alerts.col_visuals table is used to provide the default visuals for columns when
displayed in the desktop tools.

The following table describes the columns in the alerts.col_visuals table.

Table 134. Columns in the alerts.col_visuals table

Column name Data type Description

Colname varchar(255) Name of the column for the visual settings.

Title varchar(255) Title of the column when displayed.

DefWidth integer Default width of the column when displayed.

MaxWidth integer Maximum width of the column when displayed.

TitleJustify integer Justification for column title:

0: left

1: center

2: right

DataJustify integer Justification for column data:

0: left

1: center

2: right

alerts.colors table
The alerts.colors table is used to create the colors required by the Windows
desktop.

The following table describes the columns in the alerts.colors table.

Table 135. Columns in the alerts.colors table

Column name Data type Description

Severity integer Severity of problem:

0: Clear

1: Indeterminate

2: Warning

3: Minor

4: Major

5: Critical

AckedRed integer Red component of the RGB color for acknowledged events. Must
be in the range 0-255.

AckedGreen integer Green component of the RGB color for acknowledged events.
Must be in the range 0-255.

AckedBlue integer Blue component of the RGB color for acknowledged events. Must
be in the range 0-255.

Appendix A. ObjectServer tables 387

Table 135. Columns in the alerts.colors table (continued)

Column name Data type Description

UnackedRed integer Red component of the RGB color for unacknowledged events.
Must be in the range 0-255.

UnackedGreen integer Green component of the RGB color for unacknowledged events.
Must be in the range 0-255.

UnackedBlue integer Blue component of the RGB color for unacknowledged events.
Must be in the range 0-255.

Desktop tools tables
The desktop tools tables contain information used to configure event list tools.

tools.actions table
The tools.actions table is used to control desktop tools.

The following table describes the columns in the tools.actions table.

Table 136. Columns in the tools.actions table

Column name Data type Description

ActionID integer The identifier of the tool.

Name varchar(64) The name of the tool.

Owner integer Indicates whether or not the tool has an owner.

Enabled integer Indicates whether or not the tool is enabled.

Description1 varchar(255) The first line of the description.

Description2 varchar(255) The second line of the description.

Description3 varchar(255) The third line of the description.

Description4 varchar(255) The fourth line of the description.

HasInternal integer Indicates whether or not the tool has an internal effect.

InternalEffect1 varchar(255) The first line of the internal effect.

InternalEffect2 varchar(255) The second line of the internal effect.

InternalEffect3 varchar(255) The third line of the internal effect.

InternalEffect4 varchar(255) The fourth line of the internal effect.

InternalForEach integer When set, starts the internal effect for each selected row.

HasExternal integer Indicates whether the tool has an external procedure.

ExternalEffect1 varchar(255) The first line of the external procedure.

ExternalEffect2 varchar(255) The second line of the external procedure.

ExternalEffect3 varchar(255) The third line of the external procedure.

ExternalEffect4 varchar(255) The fourth line of the external procedure.

ExternalForEach integer When set, starts the external procedure for each selected row.

RedirectOut integer When selected, output is echoed through a read-only window in
the same display as the event list that ran the tool.

RedirectErr integer When selected, errors are echoed through a read-only window in
the same display as the event list that ran the tool.

388 IBM Tivoli Netcool/OMNIbus: Administration Guide

Table 136. Columns in the tools.actions table (continued)

Column name Data type Description

Platform varchar(255) Indicates the type of operating system that the external procedure
runs on:

NT (Windows platforms)

UNIX (UNIX platforms)

UNIX, NT (UNIX and Windows platforms)

JournalText1 varchar(255) The first line of the journal entry.

JournalText2 varchar(255) The second line of the journal entry.

JournalText3 varchar(255) The third line of the journal entry.

JournalText4 varchar(255) The fourth line of the journal entry.

JournalForEach integer When set, adds the journal entry for each selected row.

HasForcedJournal integer Forces a journal entry window to be opened when the tool runs.

tools.action_access table
The tools.action_access table is used to control access to desktop tools.

The following table describes the columns in the tools.action_access table.

Table 137. Columns in the tools.action_access table

Column name Data type Description

ActionID integer The unique identifier of the tool, taken from the actions table.

GID integer Indicates to which group the tool is available.

ClassID integer Indicates to which class the tool is available.

ActionAccessID integer Primary key field for the table.

tools.menus table
The tools.menus table is used to control desktop tool menus.

The following table describes the columns in the tools.menus table.

Table 138. Columns in the tools.menus table

Column name Data type Description

MenuID integer Primary key field for the menus table.

Name varchar(64) Name of the menu.

Owner integer Indicates whether the menu has an owner.

Enabled integer Indicates whether the menu is enabled or disabled.

Appendix A. ObjectServer tables 389

tools.menu_items table
The tools.menu_items table is used to control desktop tool menu items.

The following table describes the columns in the tools.menu_items table.

Table 139. Columns in the tools.menu_items table

Column name Data type Description

KeyField varchar(32) A key field for this menu item. Created from the menu_id (in the
tools.menus table) and the menu_item_id.

MenuID integer The unique menu identifier taken from the tools.menus table.

MenuItemID integer The primary key identifier for this menu item.

Title varchar(64) The name that appears on the menu.

Description varchar(255) The description of the menu item.

Enabled integer Indicates whether the menu item is enabled or disabled.

InvokeType integer Indicates the type of menu item:

0: tool

1: separator line

2: submenu

InvokeID integer Indicates the action identifier of the action defined in the
InvokeType column.

Position integer Indicates the position (order) of this item on the menu.

Accelerator varchar(32) Indicates the keyboard shortcut of this menu item.

tools.prompt_defs table
The tools.prompt_defs table is used to store all prompt definitions.

The following table describes the columns in the tools.prompt_defs table.

Table 140. Columns in the tools.prompt_defs table

Column name Data type Description

Name varchar(64) The name of the prompt.

Prompt varchar(64) The prompt title which appears at the top of the prompt window.

Default varchar(64) The default value to enter if no value is entered by the user.

Value varchar(255) The list of available values.

Type integer The prompt type. Type 7 is a link to a menu definition with the
same name as the prompt.

390 IBM Tivoli Netcool/OMNIbus: Administration Guide

tools.menu_defs table
The tools.menu_defs table is used to control desktop tool menu items.

The following table describes the columns in the tools.menu_defs table.

Table 141. Columns in the tools.menu_defs table

Column name Data type Description

Name varchar(64) The name of the menu. This must match the name of the type 7
prompt definition.

DatabaseName varchar(64) The database used to build the menu items.

TableName varchar(64) The table used to build the menu items.

ShowField varchar(64) The field in the table to show as the menu pull-down list.

AssignField varchar(64) The actual field used to enter a value into the prompt.

OrderByField varchar(64) The field used to order the menu.

WhereClause varchar(255) The filter (condition) to show a subset of menu items.

Direction integer The order of the menu items:

0: Ascending

1: Descending

Desktop ObjectServer tables
The master.national table is used in a desktop ObjectServer architecture. This table
is created when you run nco_dbinit using the -desktopserver option. The
master.servergroups table is used to load-balance desktop connections.

master.national table
The master.national table identifies the master ObjectServer and the dual-write
mode in a desktop ObjectServer architecture.

The following table describes the columns in the master.national table.

Table 142. Columns in the master.national table

Column name Data type Description

KeyField incr Primary key column for table.

MasterServer varchar(29) Name of the master ObjectServer in a desktop ObjectServer
architecture.

DualWrite integer Whether to enable dual-write mode. Dual-write mode enables
operators to quickly see the results of tool actions (for example,
acknowledge and prioritize) on their dual server desktops. This is
done by sending all tool actions to both the desktop ObjectServer
and the master ObjectServer.

1: enabled

0: disabled

Appendix A. ObjectServer tables 391

master.servergroups table
The master.servergroups table is used to load-balance desktop connections.

The following table describes the columns in the master.servergroups table.

Table 143. Columns in the master.servergroups table

Column name Data type Description

ServerName varchar(64) The name of a desktop ObjectServer.

Group ID integer The group identifier to which each desktop ObjectServer belongs.
Event list user logins are only distributed among desktop
ObjectServers having the same GroupID.

Weight integer The priority for each desktop ObjectServer. Higher values attract
proportionally more connections. For example, an ObjectServer
with a Weight of 2 attracts twice the number of connections as one
with a Weight of 1. Load balanced connections are not redirected
to ObjectServer with a Weight of 0.

Security tables for backward compatibility
In Netcool/OMNIbus V3.6, the master database contained user authentication
tables to store Netcool/OMNIbus security information. This information is now
stored in the security database and the catalog.security_permissions table.

The master.names, master.members, and master.groups tables provided user and
group identification and authorization. The master.profiles table provided the user
restriction information. These tables are only required for compatibility with
previous versions of the desktop.

IDUC tables
The iduc_system database stores all the IDUC application support tables for
accelerated event notification, sending informational messages, and IDUC update
times.

iduc_system.channel table
The iduc_system.channel table defines the set of known IDUC channels within the
ObjectServer.

The following table describes the columns in the iduc_system.channel table.

Table 144. Columns in the iduc_system.channel table

Column name Data type Description

Name varchar(64) The channel name.

ChannelID int A key that is added for a more efficient reference to details of the
channel stored in the associated tables.

Description varchar(2048) The channel description.

392 IBM Tivoli Netcool/OMNIbus: Administration Guide

iduc_system.channel_interest table
The iduc_system.channel_interest table stores the channel interest entries for a
given channel. There can be multiple interest entries per channel.

The following table describes the columns in the iduc_system.channel_interest
table.

Table 145. Columns in the iduc_system.channel_interest table

Column name Data type Description

Element Name varchar(64) The name of the channel recipients. This is a user or group name.

IsGroup int An indication of whether the recipients are a group of users.

Hostname varchar(255) The host name of the IDUC client.

AppName varchar(255) The application name of the IDUC client.

AppDescription varchar(255) The application description of the IDUC client.

ChannelID int The channel ID.

iduc_system.channel_summary table
The iduc_system.channel_summary table is used only for an Event Fast Track (or
accelerated event) IDUC client command. Rows from any table in the ObjectServer
can be forwarded as accelerated events. This table enables a channel to be
associated with multiple tables from which events can be accelerated.

The following table describes the columns in the iduc_system.channel_summary
table.

Table 146. Columns in the iduc_system.channel_summary table

Column name Data type Description

DatabaseName varchar(64) The database to which the table belongs.

TableName varchar(64) The name of the table.

SummaryID int An integer key that is added for a more efficient reference to the
summary columns table.

ChannelID int The channel ID.

iduc_system.channel_summary_cols table
The iduc_system.channel_summary_cols table stores details on the exact columns
that make up the actual summary for a given table.

The following table describes the columns in the
iduc_system.channel_summary_cols table.

Table 147. Columns in the iduc_system.channel_summary_cols table

Column name Data type Description

ColumnName varchar(64) The name of a column that is part of a given summary definition.

Position int The position of the column in the summary order.

SummaryID int The summary ID.

ChannelID int The channel ID.

Appendix A. ObjectServer tables 393

iduc_system.iduc_stats table
The iduc_system.iduc_stats table stores details about the last time at which IDUC
changes were passed to an IDUC client.

The following table describes the columns in the iduc_system.iduc_stats table.

Table 148. Columns in the iduc_system.iduc_stats table

Column name Data type Description

ServerName varchar(40) The name of the ObjectServer to which the IDUC client connects.
Primary key.

AppName varchar(40) The application name of the IDUC client.

AppDesc varchar(128) The application description of the IDUC client. Primary key.

ConnectionId int Uniquely identifies the connection. Primary key.

LastIducTime UTC The time at which IDUC changes were last passed to the IDUC
client.

This column is updated whenever the gateway fetches data from
the ObjectServer.

Service-affected events tables
The service-affected events tables provide support for service-affected events that
are generated in Network Manager IP Edition. A service-affected event is an alert
that warns operators that a critical customer service has been affected by one or
more network events.

precision.service_affecting_event table
The precision.service_affecting_event table stores the identifier of a service-affected
event that is generated in Network Manager IP Edition.

The following table describes the column in the precision.service_affecting_event
table.

Table 149. Column in the precision.service_affecting_event table

Column name Data type Description

ServiceEntityId integer Primary key column for table. The ID of a service-affected event.

precision.service_details table
The precision.service_details table stores the details of a service-affected event that
is generated in Network Manager IP Edition.

The following table describes the columns in the precision.service_details table.

Table 150. Columns in the precision.service_details table

Column name Data type Description

ServiceEntityId integer Primary key column for table. The ID of a service-affected event.

Type varchar(255) The type of service.

Name varchar(255) The service name.

Customer varchar(255) The associated customer.

394 IBM Tivoli Netcool/OMNIbus: Administration Guide

precision.entity_service table
The precision.entity_service table maps the identifiers of service-affected events to
the numerical IDs that uniquely identify the Network Manager IP Edition topology
entities with which the events are associated.

The following table describes the columns in the precision.entity_service table.

Table 151. Columns in the precision.entity_service table

Column name Data type Description

NmosEntityId integer Primary key column for table. A numerical ID that identifies the
Network Manager IP Edition topology entity with which a
service-affected event is associated.

ServiceEntityId integer Primary key column for table. The ID of a service-affected event.

Registry tables
The registry tables contain information about services that are connected to the
ObjectServer.

registry.oslc table
This table is used to configure and manage registrations of OSLC service providers
to IBM JazzSM service registries.

Table 152. OSLC service provider registration table registry.oslcsp.

Column Type Description

Name VARCHAR(64) A user-defined name for the
registration table entry.

RegistryURI VARCHAR(1024) The OSLC service provider
services record of the registry
service. RegistryURI is the
primary key of the table.

RegistryUsername VARCHAR(64) The user that is used to
authenticate with the JazzSM
service provider registry.

RegistryPassword VARCHAR(64) The password that is used to
authenticate with the JazzSM
service provider registry.

Registered integer Indicates whether the entry
has a registration record with
the JazzSM registry service.
Possible values are as
follows:

v 0: The entry does not have
a registration.

v 1: The entry has a
registration.

RegistrationURI VARCHAR(1024) The URI of the registration
record in the JazzSM service
provider registry for this
ObjectServer.

Appendix A. ObjectServer tables 395

Table 152. OSLC service provider registration table registry.oslcsp. (continued)

Column Type Description

LastRegistered time The date and time of the last
successful registration to the
JazzSM service provider
registry.

registry.probes table
The registry.probes table is used to track dynamic runtime information about
probes. When a probe connects to the ObjectServer, it registers information about
itself in the registry.probes table. The probe controls what data is entered into the
table.

If you have two or more instances of a probe running on one computer, and each
instance has the same name, only one instance will be registered in the
registry.probes table. To enable registration of all the instances of a probe running
on the same computer, you must use unique values for each probe's Name property.

The registry.probes table is a virtual table. Because probes update the table when
they connect to the ObjectServer, the data in the table does not need to persist
when the ObjectServer shuts down.

The following table describes the columns in the registry.probes table.

Table 153. Columns in the registry.probes table

Column name Data type Description

Name varchar(128) The value of the Name property in the probe's properties file.

Hostname varchar(64) The fully qualified domain name (FQDN) of the computer that the
probe is running on.

PID integer The probe's current process ID (PID).

Status integer Indicates the status of the probe:

0: The probe has shut down.

1: The probe is running.

HTTP_port integer The port number on which the HTTP interface of the probe is
listening. The probe properties NHttpd.EnableHTTP and
NHttpd.ListeningPort must be enabled for this port to be active.
When the port is not active, the default value of this field is 0.

HTTPS_port integer The port number on which the HTTPS interface of the probe is
listening. The probe properties NHttpd.SSLEnable and
NHttpd.SSLListeningPort must be enabled for this port to be
active. When the port is not active, the default value of this field
is 0.

StartTime time The time at which the probe started up. This information enables
you to determine whether the probe is starting up or is
reconnecting.

ProbeType varchar(128) A string representation of the type of probe connecting to the
ObjectServer, for example, “simnet” or “tivoli_eif”.

396 IBM Tivoli Netcool/OMNIbus: Administration Guide

Table 153. Columns in the registry.probes table (continued)

Column name Data type Description

ConnectionID integer The connection ID assigned to the probe when it connects to the
ObjectServer. This corresponds to the connection ID stored in the
catalog.connections table. This column is populated by the
registry_new_probe ObjectServer trigger.
Note: When a probe is connected to the ObjectServer through a
proxy server, the connection ID of the probe can change over time
and it might therefore be registered incorrectly. This is because the
proxy server optimizes its ObjectServer connections and
dynamically shuffles probe connections around. However, the
connection ID stored in the registry.probes table remains the same.
It is not updated when a probe is moved to another connection on
the same proxy server.

A workaround for this problem is to not use a proxy server in
multitiered deployments.

LastUpdate time The time stamp of the most recent update to the registry.probes
table. This column is populated by the registry_new_probe
ObjectServer trigger.

Related reference:
“Standard Tivoli Netcool/OMNIbus automations” on page 256
A set of standard automations is included with Tivoli Netcool/OMNIbus. These
automations are created during database initialization.

Appendix A. ObjectServer tables 397

398 IBM Tivoli Netcool/OMNIbus: Administration Guide

Appendix B. SQL commands, variable expressions, and
helper buttons in tools, automations, and transient event lists

You can use a number of SQL commands, variable expressions, and helper buttons
to retrieve information from a running event list, the current event, or the
operating system environment. You can use these expressions when creating a tool,
trigger, or SQL procedure, or in parameters passed to a transient event list.

The following table lists the SQL commands, variable expressions, and helper
buttons.

Table 154. SQL commands, variable expressions, and helper buttons in tools, triggers, procedures, and the transient
event list

Command/
variable
expression Button Usage

select_command

insert_command

update_command

delete_command

use_command

service_command

Click this button to select an SQL command from the pop-up menu. Based
on the command that you select, complete the resulting window as follows:

v Select: Select the database and table on which to run the SELECT
command. Then, choose the table columns to select.

v Insert: Select the database and table on which to run the INSERT
command. Then, select the table columns in which to insert values. For
each selected column, enter the value to insert. For insert statements, you
must include the primary key. Primary keys are indicated with an
asterisk (*).

v Update: Select the database and table on which to run the command.
Then, select the table columns to update. For each selected column, enter
the new value. For update statements, you must exclude the primary
key. Primary keys are indicated with an asterisk (*).
Note: For inserts and updates to the alerts.status table, any existing
conversions appear in the drop-down lists.

v Delete: Select the table to delete.

v Use: Select the database to use.

v Service: Select a service name and a value. Values can be Good, Marginal,
or Bad.

column_name

@column_name

Click this button to select a table column name to add to the command.
The column name is substituted for the corresponding event list row value
when the tool runs.

When prefaced with the @ symbol, the column name is substituted with
the corresponding event list row value during execution. This can be used
in an SQL query or restriction filter, such as: RemoteNodeAlias =
’@LocalNodeAlias’

conversion_name Click this button to select from a list of available conversions.

N/A Click this button to bring up a list of keywords that complete the entered
SQL.

N/A Click this button to check the validity of the entered SQL syntax.

© Copyright IBM Corp. 1994, 2013 399

Table 154. SQL commands, variable expressions, and helper buttons in tools, triggers, procedures, and the transient
event list (continued)

Command/
variable
expression Button Usage

%internal_value Click this button to select from a list of internal values known to the
current instance of the event list. For example, to run the transient event
list and specify the ObjectServer to connect to using the -server
command-line option, specify:
-server "%server"

The following internal values are available for tools and as a parameter to
the transient event list:

%display: The current display running the application (UNIX only).

%password: The password of the user running the application.

%encrypted_password: The encrypted password of the user running
the application (UNIX only). In FIPS 140–2 mode, the password is
passed as plain text when used in tools, but is hidden when specified as
a parameter from the command line.

%server: The name of the ObjectServer to which the tool is currently
connected.

%desktopserver: The name of the desktop ObjectServer to which the
tool is currently connected.

%uid: The ObjectServer user identifier of the user running the
application.

%username: The ObjectServer user name of the user running the
application.

The following internal value is available for procedures and triggers:

%user: Used to specify user variables and access information about
connected users.

The following internal value is available for triggers only:

%trigger: Used to specify trigger variables and access information about
the current and previous executions of triggers.

The following internal value is additionally available for signal triggers
only:

%signal: Used to specify signal variables and access information about
signals raised.

$prompt.
prompt_name

Click this button to select the name of the prompt to use when querying
the user. For example, to run the transient event list and prompt the user to
enter their password using the Password prompt, specify: -password
$prompt.Password

You can use prompts in tools and as a parameter to the transient event list.

$selected_rows.
column_name

N/A List of values of column_name for all selected alerts. For example:

update alerts.status set TaskList = 0 where Serial in
($selected_rows.serial)

Do not use this syntax if you select the Execute for each selected row
check box. Instead, select the check box if the change is different for each
alert.

400 IBM Tivoli Netcool/OMNIbus: Administration Guide

Table 154. SQL commands, variable expressions, and helper buttons in tools, triggers, procedures, and the transient
event list (continued)

Command/
variable
expression Button Usage

$(environment_
variable)

N/A Indicates an environment variable. For example, when you run a transient
event list, you can specify the filter file by using the -elf command-line
option, such as:

-elf "$(NCHOME)/omnibus/ini/tool.elf

To run the tool on Windows, enclose the environment variable, such as
$(NCHOME), in double quotation marks. If there is a space in the path
name, it will not be interpreted correctly.

Tip:

v When typing SQL commands within the Tivoli Netcool/OMNIbus SQL editor
panels, you can type one or more characters and then press Ctrl+F1 to obtain a
dialog box with a list of keywords that might match your entry. Select the
required keyword and click OK to complete your entry. If only one keyword
matches your typed characters, the keyword is automatically completed for you.
If you press Ctrl+F1 after typing a database-related keyword, the dialog box
provides a list of possible ObjectServer databases from which you can select. If
you press Ctrl+F1 after typing a database name followed by a dot (for example:
alerts.), you can press Ctrl+F1 again to view and select from a list of tables in
the database.

v You can click the To Clipboard button to copy the command in a text format to
the clipboard.

Appendix B. SQL commands, variable expressions, and helper buttons 401

Related tasks:
“Creating and editing tools” on page 98
When you create a tool, it is added to the tools database. The tools that appear in
the Tools pane are links to entries in this database.
“Creating and editing database triggers” on page 106
A database trigger fires when a triggering database modification occurs. For
example, you can create a trigger to perform an action each time an insert takes
place on the alerts.status table.
“Creating and editing signal triggers” on page 109
Signal triggers fire when a system or user-defined signal is raised. System signals
are raised spontaneously by the ObjectServer when it detects changes to the
system. User-defined signals are explicitly created, raised, and dropped.
“Creating and editing temporal triggers” on page 112
Temporal triggers fire repeatedly based on a specified frequency.
“Creating and editing SQL procedures” on page 117
SQL procedures have the following major components: parameters, local variable
declarations, and the procedure body.
Related reference:
“Implicit user variables in procedures and triggers” on page 227
You can use user variables to access information about connected users within an
SQL expression in the body of a trigger or procedure.
“Using trigger variables in trigger conditions and actions” on page 242
You can use trigger variables to access information about the current and previous
executions of the trigger. Use the %trigger notation to specify trigger variables.
The % symbol indicates that you are referencing an implicit variable. The trigger
keyword references the current trigger.
“System signals and their attributes” on page 243
When a system signal is raised, attributes that identify the cause of the signal are
set. These attributes are passed as implicit variables into the associated signal
trigger.

402 IBM Tivoli Netcool/OMNIbus: Administration Guide

Appendix C. Application commands quick reference

This quick reference guide lists the commands for starting the applications and
utilities that are included with Tivoli Netcool/OMNIbus.

The available applications and utilities are grouped according to their functions.

Main applications

The following commands start the main Tivoli Netcool/OMNIbus applications.

Table 155. Main applications

Command Description

nco_objserv Starts an ObjectServer.

nco_g_objserv_uni Starts a unidirectional ObjectServer gateway.

nco_g_objserv_bi Starts a bidirectional ObjectServer gateway.

nco_config

(Netcool/OMNIbus Administrator)

Starts the Netcool/OMNIbus Administrator
graphical user interface (GUI), used to
administer ObjectServers and process agents.

On Windows operating systems, you can
also start the Administrator from the
following menu:

Start > All Programs > NETCOOL Suite >
Administrator

nco_pad

(Process Agent Daemon)

Starts the process agent daemon.

nco_aen

(Accelerated Event Notification)

Starts the Accelerated Event Notification
(AEN) GUI.

On Windows operating systems, you can
also start the AEN from the following menu:

Start > All Programs > NETCOOL Suite >
Notifier

nco_event

(Event List)

Starts the event list GUI on UNIX or Linux
operating systems.

NCOEvent

(Event List)

Starts the event list GUI on Windows
operating systems.

On Windows operating systems, you can
also start the event list from the following
menu:

Start > All Programs > NETCOOL Suite >
Event List

nco_elct

(Transient Event List)

Starts the transient event list GUI on UNIX
or Linux operating systems.

© Copyright IBM Corp. 1994, 2013 403

Table 155. Main applications (continued)

Command Description

NCOElct

(Transient Event List)

Starts the transient event list GUI on
Windows operating systems.

Installation utilities

Table 156. Installation utilities

Command Description

install Installs Tivoli Netcool/OMNIbus in one of
three modes: wizard, console, or silent.

nco_install_integration Starts the probe and gateway installation
wizard and includes options for console
mode and silent mode installation.

This utility replaced nco_patch in V7.3 of
Tivoli Netcool/OMNIbus.

nc_install_logs Extracts and packages installation log files
for transmission to IBM Software Support.

nco_id Displays information about your Tivoli
Netcool/OMNIbus installation and includes
options for basic or detailed output and for
writing the information to a HTML file.

nco_version Returns version information about your
Tivoli Netcool/OMNIbus installation,
including library versions and debug
settings.

nco_id uses nco_version to collect
information about Netcool libraries.

nco_install_ospam Installs the ObjectServer Pluggable
Authentication Module (PAM) on UNIX and
Linux operating systems.

Administration utilities

Table 157. Administration utilities

Command Description

nco

(Netcool/OMNIbus Conductor)

Starts the Netcool/OMNIbus Conductor
GUI on UNIX and Linux operating systems.

NCOConductor

(Netcool/OMNIbus Conductor)

Starts the Netcool/OMNIbus Conductor
GUI on Windows operating systems.

nco_bridgeserv Starts a firewall bridge server.

nco_proxyserv Starts a proxy server.

nco_igen Generates a server communications
interfaces file for a specific UNIX or Linux
operating system.

Interfaces files can also be generated using
the Server Editor.

404 IBM Tivoli Netcool/OMNIbus: Administration Guide

Table 157. Administration utilities (continued)

Command Description

nco_xigen

(Server Editor)

Starts the Server Editor GUI on UNIX and
Linux operating systems.

There is no command-line utility for starting
the Server Editor on Windows operating
systems. Instead, use the following menu:

Start > All Programs > NETCOOL Suite >
System Utilities > Servers Editor

ObjectServer utilities

Table 158. ObjectServer utilities

Command Description

nco_dbinit

(Database initialization utility)

Creates one or more ObjectServers.

This utility replaced nco_new_server in V7.0
of Tivoli Netcool/OMNIbus.

nco_osreport Writes the contents of ObjectServer tables to
a HTML or XML file. This utility can also be
used to export an ObjectServer configuration
to a set of SQL files, which can then be used
to create the initial contents of a new
ObjectServer.

nco_confpack Creates and manages configuration packages
for transferring configuration objects
between ObjectServers, for deploying
duplicate ObjectServers, and for backing up
ObjectServer configurations.

nco_sql

(SQL interactive interface)

Starts the SQL interactive interface on UNIX
and Linux operating systems.

You can use the SQL interactive interface to
connect to an ObjectServer and issue SQL
commands.

isql

(SQL interactive interface)

Starts the SQL interactive interface on
Windows operating systems.

You can use the SQL interactive interface to
connect to an ObjectServer and issue SQL
commands.

nco_postmsg Generates ObjectServer SQL INSERT
statements using data input from the
command line, from scripts, or from text
files.

You can use this utility as a replacement for
the IBM Tivoli Enterprise Console postemsg
utility and the postzmsg utility.

nco_check_store

(Checkpoint verification utility)

Verifies that existing checkpoint files are
valid. This utility is intended to be used by
automations and can be used only to check
ObjectServer stores that are not currently in
use.

Appendix C. Application commands quick reference 405

Table 158. ObjectServer utilities (continued)

Command Description

nco_store_resize Changes the hard limit size of the
table_store memstore.

nco_baroc2sql Converts Tivoli Enterprise Console BAROC
(BAsic Recorder of Objects in C) files to
ObjectServer SQL files, which you can then
import into an ObjectServer.

Process control utilities

Table 159. Process control utilities

Command Description

nco_pa_addentry Adds a new service or process to a running
process agent.

nco_pa_start Starts services and processes that are under
process agent control.

nco_pa_stop Stops services and processes that are under
process agent control.

nco_pa_status Displays the status of services and processes
that are under process agent control. For
each service, the utility returns a list of
defined processes, the status of each process,
and the process identifier.

nco_pa_shutdown Shuts down a process agent. Services and
processes under the control of the process
agent can be left running if required.

Encryption utilities

Table 160. Encryption utilities

Command Description

nco_crypt Encrypts plain text login passwords using
the Data Encryption Standard (DES), for use
by Tivoli Netcool/OMNIbus probes and
gateways.

When running Tivoli Netcool/OMNIbus in
FIPS 140-2 mode, use nco_aes_crypt for
encrypting passwords in probe and gateway
properties files.

nco_aes_crypt Encrypts and decrypts string values or data
in a file using the Advanced Encryption
Standard (AES). It requires a key file that is
generated using the nco_keygen utility.

nco_g_crypt Encrypts plain text login passwords using
DES encryption, for use by Tivoli
Netcool/OMNIbus probes and gateways.

When running Tivoli Netcool/OMNIbus in
FIPS 140-2 mode, use nco_aes_crypt for
encrypting passwords in probe and gateway
properties files.

406 IBM Tivoli Netcool/OMNIbus: Administration Guide

Table 160. Encryption utilities (continued)

Command Description

nco_pa_crypt Encrypts plain text login passwords on
UNIX and Linux operating systems, for use
in the process agent configuration file.

When running Tivoli Netcool/OMNIbus in
FIPS 140-2 mode, use nco_aes_crypt for
encrypting passwords in the process agent
configuration file.

nco_sql_crypt Encrypts plain text login passwords on
UNIX and Linux operating systems, for use
by the SQL interactive interface (nco_sql).

When running Tivoli Netcool/OMNIbus in
FIPS 140-2 mode, use nco_aes_crypt for
encrypting passwords in the SQL interactive
interface properties file.

nco_get_login_token nco_sql, when run in secure mode, uses
nco_get_login_token to generate a
single-use, fixed-lifetime login token.

nco_keygen Generates AES encryption keys and stores
them in key files.

nco_ssl_migrate Migrates SSL certificate files and private
encryption keys from Tivoli
Netcool/OMNIbus V7.2 (or later) into the
Certificate Management System (CMS) key
database in V7.4.

nc_gskcmd Manages SSL certificates and key databases
on Tivoli Netcool/OMNIbus deployments
that run in FIPS 140-2 mode, or in networks
with Java-based clients that require
encrypted communications.

nc_ikeyman Starts the iKeyman SSL certificate
management and key database GUI.

iKeyman must not be used on Tivoli
Netcool/OMNIbus deployments that run in
FIPS 140-2 mode, or in networks with
Java-based clients that require encrypted
communications.

Probe utilities

Table 161. Probe and gateway utilities

Command Description

nco_http Connects to probes that have a HTTP or
HTTPS interface and issues HTTP requests.

nco_probereloadrules Remotely reloads a probe rules file without
restarting the probe.

nco_setprobeprop Remotely updates the value of a probe
property.

nco_probeeventfactory Remotely generates an event on a probe.

Appendix C. Application commands quick reference 407

Table 161. Probe and gateway utilities (continued)

Command Description

nco_mibmanager Starts the Tivoli Netcool/OMNIbus MIB
Manager GUI.

MIB Manager parses SNMP management
information base (MIB) files and generates
Netcool rules files for use with the SNMP
Probe.

Online help utilities

Table 162. Online help utilities

Command Description

IC_start Starts the IBM Eclipse Help System (IEHS) local server.

IC_end Stops the IEHS local server.

help_end Stops the IEHS local server when it is running in stand-alone
mode.

Other utilities

Table 163. Other utilities

Command Description

nco_cftp Transfers files between computers.

nco_mail A wrapper script that uses sendmail to send e-mails. It is used by
the mail_on_critical trigger.

nco_functions A file that can be called from shell scripts to provide useful
functions for the Tivoli Netcool/OMNIbus environment.

nco_run A run script that ensures the environment is set up and the
correct binary is executed.

nco_message Opens a dialog box on the screen with a message. The following
is an example usage:

./nco_message -title "ObjectServer Status"
-message "The ObjectServer is responding

to pings" -type info

nco_ping Pings a Netcool/OMNIbus server to check its availability. For
example, it can be used to verify that an ObjectServer or a
gateway is running.

nco_xcheck Checks that the $DISPLAY environment variable is set on UNIX
and Linux operating systems.

408 IBM Tivoli Netcool/OMNIbus: Administration Guide

Notices

This information was developed for products and services offered in the U.S.A.

IBM may not offer the products, services, or features discussed in this document in
other countries. Consult your local IBM representative for information on the
products and services currently available in your area. Any reference to an IBM
product, program, or service is not intended to state or imply that only that IBM
product, program, or service may be used. Any functionally equivalent product,
program, or service that does not infringe any IBM intellectual property right may
be used instead. However, it is the user's responsibility to evaluate and verify the
operation of any non-IBM product, program, or service.

IBM may have patents or pending patent applications covering subject matter
described in this document. The furnishing of this document does not grant you
any license to these patents. You can send license inquiries, in writing, to:

IBM Director of Licensing
IBM Corporation
North Castle Drive
Armonk, NY 10504-1785
U.S.A.

For license inquiries regarding double-byte (DBCS) information, contact the IBM
Intellectual Property Department in your country or send inquiries, in writing, to:

Intellectual Property Licensing
Legal and Intellectual Property Law
IBM Japan, Ltd.
19-21, Nihonbashi-Hakozakicho, Chuo-ku
Tokyo 103-8510, Japan

The following paragraph does not apply to the United Kingdom or any other
country where such provisions are inconsistent with local law: INTERNATIONAL
BUSINESS MACHINES CORPORATION PROVIDES THIS PUBLICATION "AS IS"
WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS OR IMPLIED,
INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
NON-INFRINGEMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR
PURPOSE. Some states do not allow disclaimer of express or implied warranties in
certain transactions, therefore, this statement may not apply to you.

This information could include technical inaccuracies or typographical errors.
Changes are periodically made to the information herein; these changes will be
incorporated in new editions of the publication. IBM may make improvements
and/or changes in the product(s) and/or the program(s) described in this
publication at any time without notice.

Any references in this information to non-IBM Web sites are provided for
convenience only and do not in any manner serve as an endorsement of those Web
sites. The materials at those Web sites are not part of the materials for this IBM
product and use of those Web sites is at your own risk.

© Copyright IBM Corp. 1994, 2013 409

IBM may use or distribute any of the information you supply in any way it
believes appropriate without incurring any obligation to you.

Licensees of this program who wish to have information about it for the purpose
of enabling: (i) the exchange of information between independently created
programs and other programs (including this one) and (ii) the mutual use of the
information which has been exchanged, should contact:

IBM Corporation
958/NH04
IBM Centre, St Leonards
601 Pacific Hwy
St Leonards, NSW, 2069
Australia

IBM Corporation
896471/H128B
76 Upper Ground
London SE1 9PZ
United Kingdom

IBM Corporation
JBF1/SOM1
294 Route 100
Somers, NY, 10589-0100
United States of America

Such information may be available, subject to appropriate terms and conditions,
including in some cases, payment of a fee.

The licensed program described in this document and all licensed material
available for it are provided by IBM under terms of the IBM Customer Agreement,
IBM International Program License Agreement or any equivalent agreement
between us.

Any performance data contained herein was determined in a controlled
environment. Therefore, the results obtained in other operating environments may
vary significantly. Some measurements may have been made on development-level
systems and there is no guarantee that these measurements will be the same on
generally available systems. Furthermore, some measurements may have been
estimated through extrapolation. Actual results may vary. Users of this document
should verify the applicable data for their specific environment.

Information concerning non-IBM products was obtained from the suppliers of
those products, their published announcements or other publicly available sources.
IBM has not tested those products and cannot confirm the accuracy of
performance, compatibility or any other claims related to non-IBM products.
Questions on the capabilities of non-IBM products should be addressed to the
suppliers of those products.

All statements regarding IBM's future direction or intent are subject to change or
withdrawal without notice, and represent goals and objectives only.

This information contains examples of data and reports used in daily business
operations. To illustrate them as completely as possible, the examples include the

410 IBM Tivoli Netcool/OMNIbus: Administration Guide

names of individuals, companies, brands, and products. All of these names are
fictitious and any similarity to the names and addresses used by an actual business
enterprise is entirely coincidental.

COPYRIGHT LICENSE:

This information contains sample application programs in source language, which
illustrate programming techniques on various operating platforms. You may copy,
modify, and distribute these sample programs in any form without payment to
IBM, for the purposes of developing, using, marketing or distributing application
programs conforming to the application programming interface for the operating
platform for which the sample programs are written. These examples have not
been thoroughly tested under all conditions. IBM, therefore, cannot guarantee or
imply reliability, serviceability, or function of these programs.

Portions of this product include software developed by Daniel Veillard.
v libxml2-2.7.8

The libxml2-2.7.8 software is distributed according to the following license
agreement:
© Copyright 1998-2003 Daniel Veillard.
All Rights Reserved. Permission is hereby granted, free of charge, to any person
obtaining a copy of this software and associated documentation files (the
“Software”), to deal in the Software without restriction, including without
limitation the rights to use, copy, modify, merge, publish, distribute, sublicense,
and/or sell copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:
The above copyright notice and this permission notice shall be included in all
copies or substantial portions of the Software.
THE SOFTWARE IS PROVIDED “AS IS”, WITHOUT WARRANTY OF ANY KIND,
EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES
OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
NONINFRINGEMENT. IN NO EVENT SHALL THE DANIEL VEILLARD BE
LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN
AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF
OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
DEALINGS IN THE SOFTWARE.
Except as contained in this notice, the name of Daniel Veillard shall not be used in
advertising or otherwise to promote the sale, use or other dealings in this Software
without prior written authorization from him.

If you are viewing this information softcopy, the photographs and color
illustrations may not appear.

Trademarks
AIX, IBM, the IBM logo, ibm.com®, Netcool, and Tivoli are trademarks or
registered trademarks of International Business Machines Corporation in the
United States, other countries, or both.

Adobe, Acrobat, Portable Document Format (PDF), PostScript, and all Adobe-based
trademarks are either registered trademarks or trademarks of Adobe Systems
Incorporated in the United States, other countries, or both.

Notices 411

Java and all Java-based trademarks and logos are trademarks or
registered trademarks of Sun Microsystems, Inc. in the United States,
other countries, or both.

Linux is a registered trademark of Linus Torvalds in the United States, other
countries, or both.

Microsoft, Windows, Windows NT, and the Windows logo are trademarks of
Microsoft Corporation in the United States, other countries, or both.

UNIX is a registered trademark of The Open Group in the United States and other
countries.

Other company, product, or service names may be trademarks or service marks of
others.

412 IBM Tivoli Netcool/OMNIbus: Administration Guide

Index

A
accelerated event notification

configuring 265
configuring alerts.status 267
configuring channels 267
configuring gateway 266
configuring probe rules 265
configuring triggers 273
disconnecting clients 272
sending messages to channel

recipients 271
shutting down clients 273

accessibility x
ADD COLUMN 165
adding

columns 136, 165
separators to menus 93
submenus to menus 93
table columns 136, 165
tools to menus 93

aggregate SELECT 200
alert processing 1
alerts

sending to ObjectServer 30
alerts tables 357
alerts.application_types table 370
alerts.col_visuals table 387
alerts.colors table 387
alerts.conversions table 386
alerts.details table 369
alerts.iduc_messages table 370
alerts.journal table 369
alerts.resolutions table 386
alerts.status table 357
ALTER COLUMN 168
ALTER FILE 177
ALTER GROUP 210
ALTER ROLE 212
ALTER SYSTEM 205
ALTER TABLE 165
ALTER TRIGGER 256
ALTER TRIGGER GROUP 231
ALTER USER 208
altering

columns 168
files 177
groups 210
roles 212
table columns 168
tables 165
triggers 256
users 208

application commands
application 403

arch
operating system directory x

assigning permissions
roles 212

assigning roles
groups 215

audience vii

authorization
description 75

automations
configuring 104
service-affected events 261
standard 256

B
best practices

triggers 351
binary comparison operators 181

C
CASE WHEN 225
catalog.base_tables table 374
catalog.channel_stats table 385
catalog.columns table 375
catalog.connections table 380
catalog.database_triggers table 378
catalog.databases table 373
catalog.external_procedures table 379
catalog.files table 375
catalog.indexes table 382
catalog.memstores table 372
catalog.primitive_signal_parameters

table 376
catalog.primitive_signals table 376
catalog.procedure_parameters table 380
catalog.procedures table 379
catalog.profiles table 383
catalog.properties table 381
catalog.restrictions table 375
catalog.security_permissions table 381
catalog.signal_triggers table 378
catalog.sql_procedures table 379
catalog.tables table 373
catalog.temporal_triggers table 378
catalog.trigger_groups table 377
catalog.trigger_stats table 384
catalog.triggers table 377
catalog.views table 374
channels

configuring 147
copying 270
creating 267
deleting 271
editing 267
pasting 270

CHECK STATEMENT 207
checkpoint files 27
checkpointing

checkpoint files 27
nco_check_store 28
ObjectServer 27

classes
creating 132
deleting 133
editing 132

client tool support tables 386
column visuals

creating 131
deleting 132
editing 131

columns
adding 136, 165
altering 168
data types 162
deleting 142, 166
dropping 166
editing 136, 168
optional properties 164

command reference 403
command-line options

ObjectServer 3
components

process control 277
conditions 192
configuring

accelerated event notification 265,
266, 267, 273

channels 147
databases 134
files 144
groups 81
procedures 117
prompts 101
properties 143
restriction filters 90
roles 76
signals 126
tools 97
triggers 105
users 85

connecting
ObjectServer 67
process agent 68, 312

conventions, typeface x
conversions

creating 129
deleting 130
editing 129

copying
channels 270
processes 325
services 325

CREATE DATABASE 159
CREATE FILE 175
CREATE GROUP 210
CREATE INDEX 170
CREATE PROCEDURE 220, 228
CREATE RESTRICTION FILTER 174
CREATE ROLE 211
CREATE SIGNAL 239
CREATE TABLE 162
CREATE TRIGGER 233, 236, 238
CREATE TRIGGER GROUP 231
CREATE USER 207
CREATE VIEW 172

© Copyright IBM Corp. 1994, 2013 413

creating
channels 267
classes 132
column visuals 131
conversions 129
database triggers 106, 233
databases 134, 159
external procedures 120, 228
files 175
groups 82, 210
indexes 170
ObjectServer files 144
processes 320
prompts 101
restriction filters 90, 174
roles 79, 211
services 317
severity colors 130
signal triggers 109, 238
SQL procedures 117, 220
tables 135, 162
temporal triggers 112, 236
tools 98
trigger groups 105, 231
user-defined signals 126, 239
users 85, 207
views 172

customizing
menus 93

D
data types

columns 162
database triggers

creating 106, 233
editing 106

databases
configuring 134
creating 134, 159
deleting 142, 160
dropping 160
system-initialized 160

defining
routing hosts 301
secure hosts 300

DELETE 196
deleting

channels 271
classes 133
column visuals 132
columns 142, 166
conversions 130
databases 142, 160
groups 84, 211
ObjectServer files 146
procedures 125
processes 322
prompts 104
restriction filters 92
roles 81, 218
separators from menu 96
services 318
submenus from menu 96
table columns 142, 166
tables 142
tools 100

deleting (continued)
tools from menu 96
trigger groups 116, 232
triggers 117, 256
user-defined signals 128
users 88

DESCRIBE 203
desktop tables 391
desktop tools tables 388
displaying

firewall bridge server property
value 60

DROP COLUMN 166
DROP DATABASE 160
DROP FILE 177
DROP GROUP 211
DROP INDEX 171
DROP PROCEDURE 231
DROP RESTRICTION FILTER 175
DROP ROLE 218
DROP SIGNAL 241
DROP TABLE 169
DROP TRIGGER 256
DROP TRIGGER GROUP 232
DROP USER 209
DROP VIEW 173
dropping

columns 166
databases 160
files 177
indexes 171
procedures 231
restriction filters 175
table columns 166
tables 169
user-defined signals 241
users 209
views 173

E
editing

channels 267
classes 132
column visuals 131
columns 136, 168
conversions 129
database triggers 106
external procedures 120
groups 82
menus 95, 96
ObjectServer files 144
processes 320
prompts 101
restriction filters 90
roles 79
services 317
severity colors 130
signal triggers 109
SQL procedures 117
table columns 136, 168
tables 165
temporal triggers 112
tools 98
trigger groups 105, 231
user-defined signals 126
users 85

education
see Tivoli technical training x

encrypting
ObjectServer passwords 19
passwords 158

environment variables, notation x
events

sending to ObjectServer 30
examples

nco_postmsg 36
EXECUTE PROCEDURE 230
exiting

Netcool/OMNIbus Administrator 75
SQL interactive interface 158

expressions 192
external actions

running 326
external editors for procedures 123
external editors for triggers 114
external procedures

creating 120, 228
editing 120

F
files

altering 177
configuring 144
creating 175
dropping 177

firewall bridge
standard setup 48

firewall bridge failover configuration
failover 51

firewall bridge server
command-line options 54
nco_bridgeserv 53
overview 47
properties 54
starting 53
starting manually 53
starting using process control 53
starting using services 53

firewall bridge server data flows
listing 60

firewall bridge server properties
listing 59

firewall bridge server property value
displaying 60

firewall bridge server shutdown
shutdown 61

FOR 226
FOR EACH ROW 225
functions 186

G
GET CONFIG; 59
GET PROP; 60
GRANT 212
GRANT ROLE 215
Granularity property 22
group by SELECT 201
groups

altering 210
assigning roles 215

414 IBM Tivoli Netcool/OMNIbus: Administration Guide

groups (continued)
configuring 81
creating 82, 210
default 81
deleting 84, 211
editing 82

H
helper buttons 399

I
IDUC 22

specifying port 22
update interval 22

IDUC EVTFT 254
IDUC FLUSH 204
IDUC SNDMSG 255
IDUC tables 392
iduc_system.channel table 392
iduc_system.channel_interest table 393
iduc_system.channel_summary table 393
iduc_system.channel_summary_cols

table 393
iduc_system.iduc_stats table 394
IF THEN ELSE 224
implicit user variables 227
implicit variables 235
index details

viewing 171
indexes

creating 170
dropping 171

indexing guidelines 348
INSERT 194
isql 151, 152

command-line options 153

K
key performance indicators

gateways 334
ObjectServer 330
probes 333

L
list comparison operators 183
listing

firewall bridge server data flows 60
firewall bridge server properties 59

Logging level
specifying 61

logical operators 184

M
manuals viii
master.class_membership table 371
master.national table 391
master.servergroups table 392
master.stats table 384
math operators 181

memstores
ObjectServer data storage 26
table_store 29

menus
customizing 93
editing 95, 96
previewing structure 97

monitoring
ObjectServer

connections 146
ObjectServer connections 146

multicultural support
Netcool/OMNIbus Administrator 63
ObjectServer 23

multiple firewall bridge
multiple setup 50

N
naming conventions

ObjectServer objects 156
nco_aes_crypt 19, 44
nco_bridgeserv 53
nco_check_store 28
nco_config 64

command-line options 64
properties 64

nco_g_crypt 19, 44
nco_objserv 1
nco_pa_addentry 308
nco_pa_shutdown 307
nco_pa_start 306
nco_pa_status 304
nco_pa_stop 307
nco_pad 282

command-line options 283
nco_postmsg 30

command-line options 33
examples 36
properties 33

nco_proxyserv 40
nco_sql 151, 152

command-line options 153
nco_store_resize 26

command-line options 29
Netcool/OMNIbus Administrator

aligning columns 72
command-line options 64
configuring syntax colors 74
copying objects 73
exiting 75
filtering rows 73
hiding columns 72
multicultural support 63
nco_config 64
pasting objects 73
properties 64
selecting columns 72
selecting ObjectServer objects 71
selecting rows to display 73
setting preferences 72
sorting results tables 72
SQL syntax colors 74
starting 64
Web browser for online help 74

O
object permissions 212

inheritance 215
ObjectServer

alert processing 1
ALTER SYSTEM 1
changing properties 143
checkpointing 27
command-line options 3
configuring automations 104
connecting 67
data recovery 28
file creation sequence 144
Granularity property 22
IDUC 22
IDUC update interval 22
maintaining database table files on

disk 27
memstores 26
monitoring connections 146
multicultural support 23
naming conventions for objects 156
nco_aes_crypt 19
nco_g_crypt 19
operator precedence 185
properties 3
properties file 1
reserved words 178
secure mode 19
specifying command-line options 1
specifying properties 1
SQL 151
system tables 169
viewing properties 143

ObjectServer files
creating 144
deleting 146
editing 144

ObjectServer tables
alerts tables 357
alerts.application_types 370
alerts.col_visuals 387
alerts.colors 387
alerts.conversions 386
alerts.details 369
alerts.iduc_messages 370
alerts.journal 369
alerts.resolutions 386
alerts.status 357
catalog.base_tables 374
catalog.channel_stats 385
catalog.columns 375
catalog.connections 380
catalog.database_triggers 378
catalog.databases 373
catalog.external_procedures 379
catalog.files 375
catalog.indexes 382
catalog.memstores 372
catalog.primitive_signal_param. 376
catalog.primitive_signals 376
catalog.procedure_parameters 380
catalog.procedures 379
catalog.profiles 383
catalog.properties 381
catalog.restrictions 375
catalog.security_permissions 381

Index 415

ObjectServer tables (continued)
catalog.signal_triggers 378
catalog.sql_procedures 379
catalog.tables 373
catalog.temporal_triggers 378
catalog.trigger_groups 377
catalog.trigger_stats 384
catalog.triggers 377
catalog.views 374
client tool support tables 386
desktop tables 391
desktop tools tables 388
IDUC tables 392
iduc_system.channel 392
iduc_system.channel_interest 393
iduc_system.channel_sum*_cols 393
iduc_system.channel_summary 393
iduc_system.iduc_stats 394
master.class_membership 371
master.national 391
master.servergroups 392
master.stats 384
overview 357
precision.entity_service 395
precision.service_affecting_event 394
precision.service_details 394
registry tables 395
registry.probes 396
security tables 392
service tables 372
service-affected events tables 394
service.status 372
statistics tables 383
system catalog tables 372
tools.action_access 389
tools.actions 388
tools.menu_defs 391
tools.menu_items 390
tools.menus 389
tools.prompt_defs 390

online publications viii
operating system directory

arch x
operator precedence 185
operators 180

binary comparison 181
list comparison 183
logical 184
math 181
string 181

optimization rules
AND optimization 345
for SQL queries 345
OR optimization 345
reordering of predicates 345

optional properties
columns 164

ordering publications viii

P
password encryption 19, 44, 158
pasting

channels 270
processes 325
services 325

performance tuning 329

performance tuning (continued)
best practices 335

alerts.details table 341
collecting trigger statistics 337
event flood 341
gateway KPIs 334
monitoring agent 342
ObjectServer KPIs 330
ObjectServer profiling 335
performance tracking 344
probe configuration files 341
probe KPIs 333
SQL queries 342
statistics triggers 340
system architecture 339

indexing guidelines 348
SQL query examples 349
SQL query guidelines 344
trigger examples 351

permissions
description 75

ports
IDUC 22

precision.entity_service table 395
precision.service_affecting_event

table 394
precision.service_details table 394
preferences

Netcool/OMNIbus Administrator 72
probes

connecting to proxy server 44
procedures

configuring 117
configuring external editors 123
creating 117, 120
creating in external editors 124
deleting 125
dropping 231
editing 117, 120
editing in external editors 124
implicit user variables 227
running 230
SQL 219

process agent
connecting 68
running 289
shutting down 307

process agents
starting automatically 292, 293
starting manually 282
stopping 327

process control
adding processes 308
adding services 308
command-line options 283
components 277
configuration file 282
configuring server

communication 281
connecting to process agent 312
copying processes 325
copying services 325
creating network 279
creating processes 320
creating services 317
creating UNIX user groups 280
defining dependencies 298

process control (continued)
defining processes 295
defining routing hosts 301
defining secure hosts 300
defining services 298
deleting processes 322
deleting services 318
displaying process status 304
displaying processes 315
displaying service status 304
displaying services 315
editing processes 320
editing services 317
host name resolution 276
logging level 314
nco_pa_addentry 308
nco_pa_shutdown 307
nco_pa_start 306
nco_pa_status 304
nco_pa_stop 307
nco_pad 282
overview 275
pasting processes 325
pasting services 325
process agents 275
process control

host routing 314
running external procedures 327
sending signals 324
shutting down process agent 307
starting 279
starting processes 306, 323
starting services 306, 318
status information for process

agent 314
stopping process agent 327
stopping processes 307, 324
stopping services 307, 319
updating the configuration file 282
utilities 278, 304
Windows user accounts 281

process dependencies 298
processes

copying 325
creating 320
deleting 322
editing 320
pasting 325
sending signals 324
starting 323
stopping 324

prompts
configuring 101
creating 101
deleting 104
editing 101

properties
configuring 143
ObjectServer 3

proxy server
command-line options 40
connecting probes 44
nco_aes_crypt 44
nco_g_crypt 44
nco_proxyserv 40
overview 39
properties 40

416 IBM Tivoli Netcool/OMNIbus: Administration Guide

proxy server (continued)
secure mode 44
starting 39
starting manually 40
starting using process control 40
starting using services 40

publications viii

R
RAISE SIGNAL 240
raising

user-defined signals 240
registry tables 395
registry.probes table 396
reserved words 178
restriction filters

configuring 90
creating 90, 174
deleting 92
dropping 175
editing 90

REVOKE 216
REVOKE ROLE 218
roles

altering 212
assigning permissions 212
configuring 76
creating 79, 211
default 76
deleting 81, 218
editing 79
revoking from groups 218
revoking permissions 216

routing hosts
process control 301

running
external actions 326
procedures 230

S
scalar SELECT 197
secure hosts

process control 300
secure mode

ObjectServer 19
proxy server 44
SQL interactive interface 157

security tables 392
SELECT 197
SELECT (aggregate) 200
SELECT (group by) 201
SELECT (scalar) 197
sending alerts

nco_postmsg 30
sending events

nco_postmsg 30
sending signals

processes 324
separators

adding to menus 93
deleting from menu 96

service tables 372
service-affected events automations 261
service-affected events tables 394

service.status table 372
services

copying 325
creating 317
deleting 318
editing 317
pasting 325
starting 318
stopping 319

SET 224
SET DATABASE 206
SET LOG LEVEL TO 61
severity colors

creating 130
editing 130

SHOW DATAFLOWS 60
SHOW PROPS; 59
shutdown

firewall bridge server 61
SHUTDOWN 61
signal triggers

creating 109, 238
editing 109

signals 243
configuring 126

specify
logging level 61

SQL commands 399
SQL helper buttons 399
SQL interactive interface

command line 151
command-line options 153
exiting 158
GUI mode 148
redirecting text files 157
running commands 154
secure mode 157
specifying paths 156
starting 152
syntax notation 155

SQL procedures 219
body statement 222
CASE WHEN 225
components 219
creating 117, 220
editing 117
FOR 226
FOR EACH ROW 225
IF THEN ELSE 224
SET 224

SQL query guidelines 344
AND optimization 345
optimization rules 345
OR optimization 345
reordering of predicates 345

SQL syntax colors
configuring 74

SQL syntax notation 155
SSL connections 70

validating server certificates 70
starting

firewall bridge server 53
Netcool/OMNIbus Administrator 64
process agents 282, 292, 293
processes 323
proxy server 39, 40
services 318

starting (continued)
SQL interactive interface 152

statistics tables 383
stopping

process agent 327
processes 324
services 319

string operators 181
submenus

adding to menus 93
deleting from menu 96

support information x
SVC 204
system catalog tables 372
system permissions 212
system signals 243
system tables 169
system-initialized databases 160

T
table columns

adding 136, 165
altering 168
deleting 142, 166
dropping 166
editing 136, 168

table_store memstore 29
tables

altering 165
creating 135, 162
deleting 142
deleting rows 196
dropping 169
editing 165
inserting data rows 194
retrieving data 197
updating columns 195
via 195
where 195

temporal triggers
creating 112, 236
editing 112

Tivoli software information center viii
Tivoli technical training x
tools

adding to menus 93
configuring 97
creating 98
deleting 100
deleting from menu 96
editing 98

tools.action_access table 389
tools.actions table 388
tools.menu_defs table 391
tools.menu_items table 390
tools.menus table 389
tools.prompt_defs table 390
training, Tivoli technical x
trigger

alter file 264
trigger example 264
truncate file 264

trigger groups
creating 105, 231
deleting 116, 232
editing 105, 231

Index 417

triggers
accelerated event notification 254
altering 256
best practices 351
configuring 105
configuring external editors 114
creating 106, 109, 112
creating in external editors 115
deleting 117, 256
editing 106, 109, 112
editing in external editors 115
implicit user variables 227
implicit variables 235
running commands 241
variables 242

typeface conventions x

U
UPDATE 195
USE DATABASE 206
user-defined signals

creating 126, 239
deleting 128
dropping 241
editing 126
raising 240

users
altering 208
configuring 85
creating 85, 207
default 85
deleting 88
dropping 209
editing 85
viewing connections 89

V
variables 227, 235
variables, notation for x
viewing

index details 171
views

creating 172
description 172
dropping 173

W
Web browser

Netcool/OMNIbus Administrator 74
WRITE INTO 202

418 IBM Tivoli Netcool/OMNIbus: Administration Guide

����

Printed in the Republic of Ireland

SC14-7527-02

	Contents
	About this publication
	Intended audience
	What this publication contains
	Publications
	Accessibility
	Tivoli technical training
	Support information
	Conventions used in this publication

	Chapter 1. Configuring the ObjectServer
	Alert processing in the ObjectServer
	Using the ObjectServer properties and command-line options
	ObjectServer properties and command-line options

	Running the ObjectServer in secure mode
	Client tool updates using IDUC
	Specifying the IDUC update interval
	Specifying the IDUC port

	Configuring the ObjectServer for multicultural support
	Protecting the ObjectServer against event floods
	Data storage and checkpointing
	Data storage using memstores
	Introduction to checkpointing
	Checkpoint file creation
	Data recovery during ObjectServer startup

	nco_check_store checkpoint verification utility
	Changing the table_store memstore soft and hard limits

	Using nco_postmsg to send alerts to ObjectServers
	nco_postmsg properties and command-line options
	nco_postmsg examples and resulting INSERT statements

	Chapter 2. Configuring a proxy server
	Starting the proxy server
	Starting a proxy server by using process control
	Starting a proxy server by using services (Windows)
	Starting the proxy server manually
	Proxy server properties and command-line options

	Connecting to the proxy server
	Running the proxy server in secure mode

	Chapter 3. Configuring a firewall bridge server
	A standard firewall bridge server configuration
	A multiple firewall bridge server configuration
	Firewall bridge server failover configuration
	Starting the firewall bridge server
	Starting a firewall bridge server by using process control
	Starting a firewall bridge server by using Windows services
	Starting the firewall bridge server manually
	Firewall bridge server properties and command-line options

	Trusted hosts definition file
	Firewall bridge server command language
	SHOW PROPS and GET CONFIG
	GET PROP
	SHOW DATAFLOWS
	SET LOG LEVEL TO
	SHUTDOWN

	Chapter 4. Using Netcool/OMNIbus Administrator to configure ObjectServers
	Getting started with Netcool/OMNIbus Administrator
	Considerations for multicultural support
	Starting Netcool/OMNIbus Administrator
	Netcool/OMNIbus Administrator properties and command-line options
	Property and command-line processing

	Connecting to an ObjectServer
	Connecting to a process agent
	Working with Tivoli Netcool/OMNIbus components
	Secure sockets layer connections
	Validating server certificates

	Selecting ObjectServer objects to configure
	Setting preferences in Netcool/OMNIbus Administrator
	Sorting results tables
	Setting column display appearance using views
	Selecting rows to display using filters
	Copying and pasting
	Configuring colors for syntax elements in the default SQL editors
	Selecting a Web browser for displaying online help

	Exiting Netcool/OMNIbus Administrator

	Managing authorization with users, groups, roles, and restriction filters
	Configuring roles
	Creating and editing roles
	Deleting roles

	Configuring groups
	Creating and editing groups
	Deleting groups

	Configuring users
	Creating and editing users
	Deleting users
	Viewing user connections to the ObjectServer

	Configuring restriction filters
	Creating and editing restriction filters
	Deleting restriction filters

	Configuring menus, tools, and prompts
	Customizing menus
	Adding tools, submenus, and separators to a menu
	Editing menu items
	Changing the order of menu items
	Removing tools, submenus, or separators from a menu
	Previewing the structure of customized menus

	Configuring tools
	Creating and editing tools
	Deleting tools

	Configuring prompts
	Creating and editing prompts
	Deleting prompts

	Configuring automations
	Configuring triggers
	Creating and editing trigger groups
	Creating and editing database triggers
	Creating and editing signal triggers
	Creating and editing temporal triggers
	Using an external editor to create and edit triggers
	Deleting trigger groups
	Deleting triggers

	Configuring procedures
	Creating and editing SQL procedures
	Example: SQL procedure
	Creating and editing external procedures
	Example: External procedure
	Using an external editor to create and edit procedures
	Deleting procedures

	Configuring signals
	Creating and editing user-defined signals
	Example: User-defined signal and trigger
	Deleting user-defined signals

	Configuring the visual appearance of the event list
	Creating and editing conversions
	Deleting conversions
	Creating and editing event severity colors for Windows event lists
	Creating and editing column visuals
	Deleting column visuals
	Creating and editing classes
	Deleting classes

	Configuring ObjectServer databases, files, properties, connections, and channels
	Configuring databases
	Creating databases
	Creating tables
	Adding and editing table columns
	Indexing table columns
	Deleting databases
	Deleting tables
	Deleting table columns

	Viewing and changing ObjectServer properties
	Configuring ObjectServer files
	ObjectServer file creation sequence
	Creating and editing ObjectServer files
	Deleting ObjectServer files

	Monitoring ObjectServer connections
	Configuring channels

	Using the SQL interactive interface in GUI mode

	Chapter 5. ObjectServer SQL
	SQL interactive interface
	Starting the SQL interactive interface
	Command-line options for starting the SQL interactive interface

	Running SQL commands in the SQL interactive interface
	SQL syntax notation
	Naming conventions for ObjectServer objects
	Specifying paths in the SQL interactive interface
	Using text files for input and output
	Example: SQL interactive interface session on UNIX

	Running the SQL interactive interface in secure mode
	Encrypting passwords in UNIX nco_sql scripts
	Exiting the SQL interactive interface

	Creating, altering, and dropping ObjectServer objects
	Databases
	Creating a database
	Dropping a database
	System-initialized databases

	Tables
	Creating a table
	Altering a table
	Dropping a table
	System tables

	Indexes
	Creating an index
	Dropping an index
	Viewing index details

	Views
	Creating a view
	Dropping a view

	Restriction filters
	Creating a restriction filter
	Dropping a restriction filter

	Files
	Creating a file
	Altering a file
	Dropping a file

	Reserved words
	SQL building blocks
	Operators
	Math and string operators
	Binary comparison operators
	List comparison operators
	Logical operators
	Bitwise operators
	Operator precedence

	Functions
	Expressions
	Conditions

	Querying and manipulating data using ObjectServer SQL
	Inserting a new row of data into a table (INSERT command)
	Updating the data in table columns (UPDATE command)
	Deleting rows of data from a table (DELETE command)
	Retrieving data from a table or view (SELECT command)
	Basic (scalar) SELECT
	Aggregate SELECT
	Group by SELECT

	Logging information to ObjectServer files (WRITE INTO command)
	Displaying details of columns in a table or view (DESCRIBE command)
	Adding or updating service status data (SVC command)
	Sending IDUC notifications to IDUC clients (IDUC FLUSH command)

	Changing the settings of the ObjectServer (ALTER SYSTEM command)
	Setting the default database (SET DATABASE and USE DATABASE commands)
	Verifying your SQL syntax (CHECK STATEMENT command)
	Creating, modifying, and deleting users, groups, and roles
	Creating a user (CREATE USER command)
	Modifying the details of an existing user (ALTER USER command)
	Deleting a user (DROP USER command)
	Creating a group (CREATE GROUP command)
	Modifying the details of an existing group (ALTER GROUP command)
	Deleting a group (DROP GROUP command)
	Creating a role (CREATE ROLE command)
	Modifying the description of a role (ALTER ROLE command)
	Using roles to assign permissions to users
	Assigning permissions to roles (GRANT command)
	Inheritance of object permissions
	Assigning roles to groups (GRANT ROLE command)
	Revoking permissions from roles (REVOKE command)
	Revoking roles from groups (REVOKE ROLE command)

	Deleting a role (DROP ROLE command)

	Creating, running, and dropping procedures
	SQL procedures
	Components of an SQL procedure
	Creating SQL procedures (CREATE PROCEDURE command)

	External procedures
	Creating external procedures (CREATE PROCEDURE command)

	Running procedures
	Dropping procedures

	Configuring automation using triggers
	Creating, modifying, and deleting trigger groups
	Creating a trigger group (CREATE TRIGGER GROUP command)
	Modifying a trigger group (ALTER TRIGGER GROUP command)
	Deleting a trigger group (DROP TRIGGER GROUP command)

	Creating, modifying, and dropping triggers
	Creating database triggers (CREATE TRIGGER command)
	Creating temporal triggers (CREATE TRIGGER command)
	Creating signal triggers (CREATE TRIGGER command)
	Running commands in trigger actions
	Using trigger variables in trigger conditions and actions
	System signals and their attributes
	Creating triggers for accelerated event notification
	Modifying a trigger (ALTER TRIGGER command)
	Deleting a trigger (DROP TRIGGER command)

	Standard Tivoli Netcool/OMNIbus automations
	Automation for service-affected events
	Automation examples
	Example: Trigger to deduplicate the status table
	Example: Trigger to deduplicate the details table
	Example: Trigger to clean the details table
	Example: Trigger to set the alerts table StateChange column
	Example: Trigger to delete clear rows
	Example: Trigger to send e-mail notifications for critical alerts
	Example: Trigger to truncate a file
	Example: Procedure to insert a journal entry for triggers

	Chapter 6. Configuring accelerated event notification
	Configuring a probe to flag events for acceleration
	Configuring a gateway for accelerated event notification
	Configuring the alerts.status table to receive the AEN flag
	Configuring channels to broadcast event data
	Creating and editing channels
	Copying and pasting channels
	Deleting a channel
	Sending messages to channel recipients
	Disconnecting Accelerated Event Notification clients
	Shutting down Accelerated Event Notification clients

	Configuring triggers to support accelerated event notification

	Chapter 7. Using process control to manage processes and external procedures
	How process agents connect
	Host name resolution at startup

	Process control components
	Process agents
	Processes
	Services
	Process control utilities

	Creating and starting a process control network system
	Creating UNIX user groups for the process control system
	Windows account requirements for the process control system
	Configuring server communication information for process agents
	Updating the default process control configuration file
	Manually starting process agents
	Process agent command-line options

	Process agent security considerations
	Running the process agent as a non-privileged user (UNIX)
	Running the process agent as a non-privileged user (Windows)
	Running the process agent as a privileged user

	Automatically starting process agents on UNIX
	Automatically starting process agents on Windows
	Managing your process control system configuration

	Configuring and managing process control from the command line
	Defining processes, services, and hosts for process control
	Defining processes in the process agent configuration file
	Defining services in the process agent configuration file
	Defining secure hosts in the process agent configuration file
	Defining routing hosts in the process agent configuration file
	Sample: Process agent configuration file

	Managing process control using the process control utilities
	Displaying the status of services and processes (nco_pa_status)
	Starting a service or process (nco_pa_start)
	Stopping a service or process (nco_pa_stop)
	Shutting down a process agent (nco_pa_shutdown)
	Adding new services or processes (nco_pa_addentry)

	Using Netcool/OMNIbus Administrator to manage process control
	Connecting to a process agent
	Displaying and configuring status information for a process agent
	Displaying the processes and services for a process agent
	Configuring services for a process agent
	Creating and editing services
	Deleting a service
	Starting a service
	Stopping a service

	Configuring processes
	Creating and editing processes
	Deleting a process
	Starting a process
	Stopping a process
	Sending signals to processes

	Copying and pasting a service or process between process agent hosts
	Running an external action
	Stopping a process agent

	Using process control to run external procedures in automations

	Chapter 8. Performance tuning
	Tivoli Netcool/OMNIbus key performance indicators
	ObjectServer key performance indicators
	Probe key performance indicators
	Gateway key performance indicators

	Best practices for performance tuning
	Run the ObjectServer with profiling enabled
	Collect statistical information about triggers
	Review and revise your system architecture
	Enable the stats_triggers trigger group
	Review and revise your probe configuration files
	Configure event flood detection
	Manage the volume of information in the alerts.details table
	Use a monitoring agent to monitor and manage Tivoli Netcool/OMNIbus resources
	Review and amend your SQL queries, and create a selection of well-designed, efficient indexes
	Track the performance trends at regular intervals

	SQL query guidelines
	Reviewing the results of automatic query optimizations
	Optimization rules for SQL queries

	Manually optimizing queries
	Indexing guidelines
	Example usage of indexes with SQL queries
	Example usage of indexes with triggers or procedures

	Best practices for creating triggers

	Appendix A. ObjectServer tables
	Alerts tables
	alerts.status table
	alerts.details table
	alerts.journal table
	alerts.iduc_messages table
	alerts.application_types table
	master.class_membership table

	Service tables
	service.status table

	System catalog tables
	catalog.memstores table
	catalog.databases table
	catalog.tables table
	catalog.base_tables table
	catalog.views table
	catalog.files table
	catalog.restrictions table
	catalog.columns table
	catalog.primitive_signals table
	catalog.primitive_signal_parameters table
	catalog.trigger_groups table
	catalog.triggers table
	catalog.database_triggers table
	catalog.signal_triggers table
	catalog.temporal_triggers table
	catalog.procedures table
	catalog.sql_procedures table
	catalog.external_procedures table
	catalog.procedure_parameters table
	catalog.connections table
	catalog.properties table
	catalog.security_permissions table
	catalog.profiles table
	catalog.indexes table

	Statistics tables
	catalog.profiles table
	master.stats table
	catalog.trigger_stats table
	catalog.channel_stats table

	Client tool support tables
	alerts.resolutions table
	alerts.conversions table
	alerts.col_visuals table
	alerts.colors table

	Desktop tools tables
	tools.actions table
	tools.action_access table
	tools.menus table
	tools.menu_items table
	tools.prompt_defs table
	tools.menu_defs table

	Desktop ObjectServer tables
	master.national table
	master.servergroups table

	Security tables for backward compatibility
	IDUC tables
	iduc_system.channel table
	iduc_system.channel_interest table
	iduc_system.channel_summary table
	iduc_system.channel_summary_cols table
	iduc_system.iduc_stats table

	Service-affected events tables
	precision.service_affecting_event table
	precision.service_details table
	precision.entity_service table

	Registry tables
	registry.oslc table
	registry.probes table

	Appendix B. SQL commands, variable expressions, and helper buttons in tools, automations, and transient event lists
	Appendix C. Application commands quick reference
	Notices
	Trademarks

	Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	K
	L
	M
	N
	O
	P
	R
	S
	T
	U
	V
	W

